/*
 * Copyright © 2016 Red Hat.
 * Copyright © 2016 Bas Nieuwenhuizen
 *
 * based in part on anv driver which is:
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include <stdio.h>
#include <stdlib.h>
#ifndef _WIN32
#include <sys/utsname.h>
#endif
#include <sys/stat.h>

#include "util/mesa-sha1.h"
#include "ac_debug.h"
#include "radv_debug.h"
#include "radv_shader.h"
#include "sid.h"

#define TRACE_BO_SIZE 4096
#define TMA_BO_SIZE   4096

#define COLOR_RESET  "\033[0m"
#define COLOR_RED    "\033[31m"
#define COLOR_GREEN  "\033[1;32m"
#define COLOR_YELLOW "\033[1;33m"
#define COLOR_CYAN   "\033[1;36m"

#define RADV_DUMP_DIR "radv_dumps"

/* Trace BO layout (offsets are 4 bytes):
 *
 * [0]: primary trace ID
 * [1]: secondary trace ID
 * [2-3]: 64-bit GFX ring pipeline pointer
 * [4-5]: 64-bit COMPUTE ring pipeline pointer
 * [6-7]: Vertex descriptors pointer
 * [8-9]: 64-bit descriptor set #0 pointer
 * ...
 * [68-69]: 64-bit descriptor set #31 pointer
 */

bool
radv_init_trace(struct radv_device *device)
{
   struct radeon_winsys *ws = device->ws;
   VkResult result;

   result = ws->buffer_create(
      ws, TRACE_BO_SIZE, 8, RADEON_DOMAIN_VRAM,
      RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING | RADEON_FLAG_ZERO_VRAM,
      RADV_BO_PRIORITY_UPLOAD_BUFFER, 0, &device->trace_bo);
   if (result != VK_SUCCESS)
      return false;

   result = ws->buffer_make_resident(ws, device->trace_bo, true);
   if (result != VK_SUCCESS)
      return false;

   device->trace_id_ptr = ws->buffer_map(device->trace_bo);
   if (!device->trace_id_ptr)
      return false;

   ac_vm_fault_occured(device->physical_device->rad_info.chip_class, &device->dmesg_timestamp,
                       NULL);

   return true;
}

void
radv_finish_trace(struct radv_device *device)
{
   struct radeon_winsys *ws = device->ws;

   if (unlikely(device->trace_bo)) {
      ws->buffer_make_resident(ws, device->trace_bo, false);
      ws->buffer_destroy(ws, device->trace_bo);
   }
}

static void
radv_dump_trace(struct radv_device *device, struct radeon_cmdbuf *cs, FILE *f)
{
   fprintf(f, "Trace ID: %x\n", *device->trace_id_ptr);
   device->ws->cs_dump(cs, f, (const int *)device->trace_id_ptr, 2);
}

static void
radv_dump_mmapped_reg(struct radv_device *device, FILE *f, unsigned offset)
{
   struct radeon_winsys *ws = device->ws;
   uint32_t value;

   if (ws->read_registers(ws, offset, 1, &value))
      ac_dump_reg(f, device->physical_device->rad_info.chip_class, offset, value, ~0);
}

static void
radv_dump_debug_registers(struct radv_device *device, FILE *f)
{
   struct radeon_info *info = &device->physical_device->rad_info;

   fprintf(f, "Memory-mapped registers:\n");
   radv_dump_mmapped_reg(device, f, R_008010_GRBM_STATUS);

   radv_dump_mmapped_reg(device, f, R_008008_GRBM_STATUS2);
   radv_dump_mmapped_reg(device, f, R_008014_GRBM_STATUS_SE0);
   radv_dump_mmapped_reg(device, f, R_008018_GRBM_STATUS_SE1);
   radv_dump_mmapped_reg(device, f, R_008038_GRBM_STATUS_SE2);
   radv_dump_mmapped_reg(device, f, R_00803C_GRBM_STATUS_SE3);
   radv_dump_mmapped_reg(device, f, R_00D034_SDMA0_STATUS_REG);
   radv_dump_mmapped_reg(device, f, R_00D834_SDMA1_STATUS_REG);
   if (info->chip_class <= GFX8) {
      radv_dump_mmapped_reg(device, f, R_000E50_SRBM_STATUS);
      radv_dump_mmapped_reg(device, f, R_000E4C_SRBM_STATUS2);
      radv_dump_mmapped_reg(device, f, R_000E54_SRBM_STATUS3);
   }
   radv_dump_mmapped_reg(device, f, R_008680_CP_STAT);
   radv_dump_mmapped_reg(device, f, R_008674_CP_STALLED_STAT1);
   radv_dump_mmapped_reg(device, f, R_008678_CP_STALLED_STAT2);
   radv_dump_mmapped_reg(device, f, R_008670_CP_STALLED_STAT3);
   radv_dump_mmapped_reg(device, f, R_008210_CP_CPC_STATUS);
   radv_dump_mmapped_reg(device, f, R_008214_CP_CPC_BUSY_STAT);
   radv_dump_mmapped_reg(device, f, R_008218_CP_CPC_STALLED_STAT1);
   radv_dump_mmapped_reg(device, f, R_00821C_CP_CPF_STATUS);
   radv_dump_mmapped_reg(device, f, R_008220_CP_CPF_BUSY_STAT);
   radv_dump_mmapped_reg(device, f, R_008224_CP_CPF_STALLED_STAT1);
   fprintf(f, "\n");
}

static void
radv_dump_buffer_descriptor(enum chip_class chip_class, const uint32_t *desc, FILE *f)
{
   fprintf(f, COLOR_CYAN "    Buffer:" COLOR_RESET "\n");
   for (unsigned j = 0; j < 4; j++)
      ac_dump_reg(f, chip_class, R_008F00_SQ_BUF_RSRC_WORD0 + j * 4, desc[j], 0xffffffff);
}

static void
radv_dump_image_descriptor(enum chip_class chip_class, const uint32_t *desc, FILE *f)
{
   unsigned sq_img_rsrc_word0 =
      chip_class >= GFX10 ? R_00A000_SQ_IMG_RSRC_WORD0 : R_008F10_SQ_IMG_RSRC_WORD0;

   fprintf(f, COLOR_CYAN "    Image:" COLOR_RESET "\n");
   for (unsigned j = 0; j < 8; j++)
      ac_dump_reg(f, chip_class, sq_img_rsrc_word0 + j * 4, desc[j], 0xffffffff);

   fprintf(f, COLOR_CYAN "    FMASK:" COLOR_RESET "\n");
   for (unsigned j = 0; j < 8; j++)
      ac_dump_reg(f, chip_class, sq_img_rsrc_word0 + j * 4, desc[8 + j], 0xffffffff);
}

static void
radv_dump_sampler_descriptor(enum chip_class chip_class, const uint32_t *desc, FILE *f)
{
   fprintf(f, COLOR_CYAN "    Sampler state:" COLOR_RESET "\n");
   for (unsigned j = 0; j < 4; j++) {
      ac_dump_reg(f, chip_class, R_008F30_SQ_IMG_SAMP_WORD0 + j * 4, desc[j], 0xffffffff);
   }
}

static void
radv_dump_combined_image_sampler_descriptor(enum chip_class chip_class, const uint32_t *desc,
                                            FILE *f)
{
   radv_dump_image_descriptor(chip_class, desc, f);
   radv_dump_sampler_descriptor(chip_class, desc + 16, f);
}

static void
radv_dump_descriptor_set(struct radv_device *device, struct radv_descriptor_set *set, unsigned id,
                         FILE *f)
{
   enum chip_class chip_class = device->physical_device->rad_info.chip_class;
   const struct radv_descriptor_set_layout *layout;
   int i;

   if (!set)
      return;
   layout = set->header.layout;

   for (i = 0; i < set->header.layout->binding_count; i++) {
      uint32_t *desc = set->header.mapped_ptr + layout->binding[i].offset / 4;

      switch (layout->binding[i].type) {
      case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
      case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
      case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
      case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
         radv_dump_buffer_descriptor(chip_class, desc, f);
         break;
      case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
      case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
      case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
         radv_dump_image_descriptor(chip_class, desc, f);
         break;
      case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
         radv_dump_combined_image_sampler_descriptor(chip_class, desc, f);
         break;
      case VK_DESCRIPTOR_TYPE_SAMPLER:
         radv_dump_sampler_descriptor(chip_class, desc, f);
         break;
      case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
      case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
      case VK_DESCRIPTOR_TYPE_MUTABLE_VALVE:
      case VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR:
         /* todo */
         break;
      default:
         assert(!"unknown descriptor type");
         break;
      }
      fprintf(f, "\n");
   }
   fprintf(f, "\n\n");
}

static void
radv_dump_descriptors(struct radv_device *device, FILE *f)
{
   uint64_t *ptr = (uint64_t *)device->trace_id_ptr;
   int i;

   fprintf(f, "Descriptors:\n");
   for (i = 0; i < MAX_SETS; i++) {
      struct radv_descriptor_set *set = *(struct radv_descriptor_set **)(ptr + i + 4);

      radv_dump_descriptor_set(device, set, i, f);
   }
}

struct radv_shader_inst {
   char text[160];  /* one disasm line */
   unsigned offset; /* instruction offset */
   unsigned size;   /* instruction size = 4 or 8 */
};

/* Split a disassembly string into lines and add them to the array pointed
 * to by "instructions". */
static void
si_add_split_disasm(const char *disasm, uint64_t start_addr, unsigned *num,
                    struct radv_shader_inst *instructions)
{
   struct radv_shader_inst *last_inst = *num ? &instructions[*num - 1] : NULL;
   char *next;

   while ((next = strchr(disasm, '\n'))) {
      struct radv_shader_inst *inst = &instructions[*num];
      unsigned len = next - disasm;

      if (!memchr(disasm, ';', len)) {
         /* Ignore everything that is not an instruction. */
         disasm = next + 1;
         continue;
      }

      assert(len < ARRAY_SIZE(inst->text));
      memcpy(inst->text, disasm, len);
      inst->text[len] = 0;
      inst->offset = last_inst ? last_inst->offset + last_inst->size : 0;

      const char *semicolon = strchr(disasm, ';');
      assert(semicolon);
      /* More than 16 chars after ";" means the instruction is 8 bytes long. */
      inst->size = next - semicolon > 16 ? 8 : 4;

      snprintf(inst->text + len, ARRAY_SIZE(inst->text) - len,
               " [PC=0x%" PRIx64 ", off=%u, size=%u]", start_addr + inst->offset, inst->offset,
               inst->size);

      last_inst = inst;
      (*num)++;
      disasm = next + 1;
   }
}

static void
radv_dump_annotated_shader(struct radv_shader_variant *shader, gl_shader_stage stage,
                           struct ac_wave_info *waves, unsigned num_waves, FILE *f)
{
   uint64_t start_addr, end_addr;
   unsigned i;

   if (!shader)
      return;

   start_addr = radv_shader_variant_get_va(shader);
   end_addr = start_addr + shader->code_size;

   /* See if any wave executes the shader. */
   for (i = 0; i < num_waves; i++) {
      if (start_addr <= waves[i].pc && waves[i].pc <= end_addr)
         break;
   }

   if (i == num_waves)
      return; /* the shader is not being executed */

   /* Remember the first found wave. The waves are sorted according to PC. */
   waves = &waves[i];
   num_waves -= i;

   /* Get the list of instructions.
    * Buffer size / 4 is the upper bound of the instruction count.
    */
   unsigned num_inst = 0;
   struct radv_shader_inst *instructions =
      calloc(shader->code_size / 4, sizeof(struct radv_shader_inst));

   si_add_split_disasm(shader->disasm_string, start_addr, &num_inst, instructions);

   fprintf(f, COLOR_YELLOW "%s - annotated disassembly:" COLOR_RESET "\n",
           radv_get_shader_name(&shader->info, stage));

   /* Print instructions with annotations. */
   for (i = 0; i < num_inst; i++) {
      struct radv_shader_inst *inst = &instructions[i];

      fprintf(f, "%s\n", inst->text);

      /* Print which waves execute the instruction right now. */
      while (num_waves && start_addr + inst->offset == waves->pc) {
         fprintf(f,
                 "          " COLOR_GREEN "^ SE%u SH%u CU%u "
                 "SIMD%u WAVE%u  EXEC=%016" PRIx64 "  ",
                 waves->se, waves->sh, waves->cu, waves->simd, waves->wave, waves->exec);

         if (inst->size == 4) {
            fprintf(f, "INST32=%08X" COLOR_RESET "\n", waves->inst_dw0);
         } else {
            fprintf(f, "INST64=%08X %08X" COLOR_RESET "\n", waves->inst_dw0, waves->inst_dw1);
         }

         waves->matched = true;
         waves = &waves[1];
         num_waves--;
      }
   }

   fprintf(f, "\n\n");
   free(instructions);
}

static void
radv_dump_annotated_shaders(struct radv_pipeline *pipeline, VkShaderStageFlagBits active_stages,
                            FILE *f)
{
   struct ac_wave_info waves[AC_MAX_WAVES_PER_CHIP];
   enum chip_class chip_class = pipeline->device->physical_device->rad_info.chip_class;
   unsigned num_waves = ac_get_wave_info(chip_class, waves);

   fprintf(f, COLOR_CYAN "The number of active waves = %u" COLOR_RESET "\n\n", num_waves);

   /* Dump annotated active graphics shaders. */
   unsigned stages = active_stages;
   while (stages) {
      int stage = u_bit_scan(&stages);

      radv_dump_annotated_shader(pipeline->shaders[stage], stage, waves, num_waves, f);
   }

   /* Print waves executing shaders that are not currently bound. */
   unsigned i;
   bool found = false;
   for (i = 0; i < num_waves; i++) {
      if (waves[i].matched)
         continue;

      if (!found) {
         fprintf(f, COLOR_CYAN "Waves not executing currently-bound shaders:" COLOR_RESET "\n");
         found = true;
      }
      fprintf(f,
              "    SE%u SH%u CU%u SIMD%u WAVE%u  EXEC=%016" PRIx64 "  INST=%08X %08X  PC=%" PRIx64
              "\n",
              waves[i].se, waves[i].sh, waves[i].cu, waves[i].simd, waves[i].wave, waves[i].exec,
              waves[i].inst_dw0, waves[i].inst_dw1, waves[i].pc);
   }
   if (found)
      fprintf(f, "\n\n");
}

static void
radv_dump_spirv(struct radv_shader_variant *shader, const char *sha1, const char *dump_dir)
{
   char dump_path[512];
   FILE *f;

   snprintf(dump_path, sizeof(dump_path), "%s/%s.spv", dump_dir, sha1);

   f = fopen(dump_path, "w+");
   if (f) {
      fwrite(shader->spirv, shader->spirv_size, 1, f);
      fclose(f);
   }
}

static void
radv_dump_shader(struct radv_pipeline *pipeline, struct radv_shader_variant *shader,
                 gl_shader_stage stage, const char *dump_dir, FILE *f)
{
   if (!shader)
      return;

   fprintf(f, "%s:\n\n", radv_get_shader_name(&shader->info, stage));

   if (shader->spirv) {
      unsigned char sha1[21];
      char sha1buf[41];

      _mesa_sha1_compute(shader->spirv, shader->spirv_size, sha1);
      _mesa_sha1_format(sha1buf, sha1);

      fprintf(f, "SPIRV (see %s.spv)\n\n", sha1buf);
      radv_dump_spirv(shader, sha1buf, dump_dir);
   }

   if (shader->nir_string) {
      fprintf(f, "NIR:\n%s\n", shader->nir_string);
   }

   fprintf(f, "%s IR:\n%s\n", pipeline->device->physical_device->use_llvm ? "LLVM" : "ACO",
           shader->ir_string);
   fprintf(f, "DISASM:\n%s\n", shader->disasm_string);

   radv_dump_shader_stats(pipeline->device, pipeline, stage, f);
}

static void
radv_dump_shaders(struct radv_pipeline *pipeline, VkShaderStageFlagBits active_stages,
                  const char *dump_dir, FILE *f)
{
   /* Dump active graphics shaders. */
   unsigned stages = active_stages;
   while (stages) {
      int stage = u_bit_scan(&stages);

      radv_dump_shader(pipeline, pipeline->shaders[stage], stage, dump_dir, f);
   }
}

static void
radv_dump_vertex_descriptors(struct radv_pipeline *pipeline, FILE *f)
{
   void *ptr = (uint64_t *)pipeline->device->trace_id_ptr;
   uint32_t count = util_bitcount(pipeline->vb_desc_usage_mask);
   uint32_t *vb_ptr = &((uint32_t *)ptr)[3];

   if (!count)
      return;

   fprintf(f, "Num vertex %s: %d\n",
           pipeline->use_per_attribute_vb_descs ? "attributes" : "bindings", count);
   for (uint32_t i = 0; i < count; i++) {
      uint32_t *desc = &((uint32_t *)vb_ptr)[i * 4];
      uint64_t va = 0;

      va |= desc[0];
      va |= (uint64_t)G_008F04_BASE_ADDRESS_HI(desc[1]) << 32;

      fprintf(f, "VBO#%d:\n", i);
      fprintf(f, "\tVA: 0x%" PRIx64 "\n", va);
      fprintf(f, "\tStride: %d\n", G_008F04_STRIDE(desc[1]));
      fprintf(f, "\tNum records: %d (0x%x)\n", desc[2], desc[2]);
   }
}

static struct radv_pipeline *
radv_get_saved_pipeline(struct radv_device *device, enum ring_type ring)
{
   uint64_t *ptr = (uint64_t *)device->trace_id_ptr;
   int offset = ring == RING_GFX ? 1 : 2;

   return *(struct radv_pipeline **)(ptr + offset);
}

static void
radv_dump_queue_state(struct radv_queue *queue, const char *dump_dir, FILE *f)
{
   enum ring_type ring = radv_queue_family_to_ring(queue->vk.queue_family_index);
   struct radv_pipeline *pipeline;

   fprintf(f, "RING_%s:\n", ring == RING_GFX ? "GFX" : "COMPUTE");

   pipeline = radv_get_saved_pipeline(queue->device, ring);
   if (pipeline) {
      radv_dump_shaders(pipeline, pipeline->active_stages, dump_dir, f);
      if (!(queue->device->instance->debug_flags & RADV_DEBUG_NO_UMR))
         radv_dump_annotated_shaders(pipeline, pipeline->active_stages, f);
      radv_dump_vertex_descriptors(pipeline, f);
      radv_dump_descriptors(queue->device, f);
   }
}

static void
radv_dump_cmd(const char *cmd, FILE *f)
{
#ifndef _WIN32
   char line[2048];
   FILE *p;

   p = popen(cmd, "r");
   if (p) {
      while (fgets(line, sizeof(line), p))
         fputs(line, f);
      fprintf(f, "\n");
      pclose(p);
   }
#endif
}

static void
radv_dump_dmesg(FILE *f)
{
   fprintf(f, "\nLast 60 lines of dmesg:\n\n");
   radv_dump_cmd("dmesg | tail -n60", f);
}

void
radv_dump_enabled_options(struct radv_device *device, FILE *f)
{
   uint64_t mask;

   if (device->instance->debug_flags) {
      fprintf(f, "Enabled debug options: ");

      mask = device->instance->debug_flags;
      while (mask) {
         int i = u_bit_scan64(&mask);
         fprintf(f, "%s, ", radv_get_debug_option_name(i));
      }
      fprintf(f, "\n");
   }

   if (device->instance->perftest_flags) {
      fprintf(f, "Enabled perftest options: ");

      mask = device->instance->perftest_flags;
      while (mask) {
         int i = u_bit_scan64(&mask);
         fprintf(f, "%s, ", radv_get_perftest_option_name(i));
      }
      fprintf(f, "\n");
   }
}

static void
radv_dump_app_info(struct radv_device *device, FILE *f)
{
   struct radv_instance *instance = device->instance;

   fprintf(f, "Application name: %s\n", instance->vk.app_info.app_name);
   fprintf(f, "Application version: %d\n", instance->vk.app_info.app_version);
   fprintf(f, "Engine name: %s\n", instance->vk.app_info.engine_name);
   fprintf(f, "Engine version: %d\n", instance->vk.app_info.engine_version);
   fprintf(f, "API version: %d.%d.%d\n", VK_VERSION_MAJOR(instance->vk.app_info.api_version),
           VK_VERSION_MINOR(instance->vk.app_info.api_version),
           VK_VERSION_PATCH(instance->vk.app_info.api_version));

   radv_dump_enabled_options(device, f);
}

static void
radv_dump_device_name(struct radv_device *device, FILE *f)
{
   struct radeon_info *info = &device->physical_device->rad_info;
#ifndef _WIN32
   char kernel_version[128] = {0};
   struct utsname uname_data;
#endif
   const char *chip_name;

   chip_name = device->ws->get_chip_name(device->ws);

#ifdef _WIN32
   fprintf(f, "Device name: %s (%s / DRM %i.%i.%i)\n\n", chip_name, device->physical_device->name,
           info->drm_major, info->drm_minor, info->drm_patchlevel);
#else
   if (uname(&uname_data) == 0)
      snprintf(kernel_version, sizeof(kernel_version), " / %s", uname_data.release);

   fprintf(f, "Device name: %s (%s / DRM %i.%i.%i%s)\n\n", chip_name, device->physical_device->name,
           info->drm_major, info->drm_minor, info->drm_patchlevel, kernel_version);
#endif
}

static void
radv_dump_umr_ring(struct radv_queue *queue, FILE *f)
{
   enum ring_type ring = radv_queue_family_to_ring(queue->vk.queue_family_index);
   struct radv_device *device = queue->device;
   char cmd[128];

   /* TODO: Dump compute ring. */
   if (ring != RING_GFX)
      return;

   sprintf(cmd, "umr -R %s 2>&1",
           device->physical_device->rad_info.chip_class >= GFX10 ? "gfx_0.0.0" : "gfx");

   fprintf(f, "\nUMR GFX ring:\n\n");
   radv_dump_cmd(cmd, f);
}

static void
radv_dump_umr_waves(struct radv_queue *queue, FILE *f)
{
   enum ring_type ring = radv_queue_family_to_ring(queue->vk.queue_family_index);
   struct radv_device *device = queue->device;
   char cmd[128];

   /* TODO: Dump compute ring. */
   if (ring != RING_GFX)
      return;

   sprintf(cmd, "umr -O bits,halt_waves -wa %s 2>&1",
           device->physical_device->rad_info.chip_class >= GFX10 ? "gfx_0.0.0" : "gfx");

   fprintf(f, "\nUMR GFX waves:\n\n");
   radv_dump_cmd(cmd, f);
}

static bool
radv_gpu_hang_occured(struct radv_queue *queue, enum ring_type ring)
{
   struct radeon_winsys *ws = queue->device->ws;

   if (!ws->ctx_wait_idle(queue->hw_ctx, ring, queue->vk.index_in_family))
      return true;

   return false;
}

void
radv_check_gpu_hangs(struct radv_queue *queue, struct radeon_cmdbuf *cs)
{
   struct radv_device *device = queue->device;
   enum ring_type ring;
   uint64_t addr;

   ring = radv_queue_family_to_ring(queue->vk.queue_family_index);

   bool hang_occurred = radv_gpu_hang_occured(queue, ring);
   bool vm_fault_occurred = false;
   if (queue->device->instance->debug_flags & RADV_DEBUG_VM_FAULTS)
      vm_fault_occurred = ac_vm_fault_occured(device->physical_device->rad_info.chip_class,
                                              &device->dmesg_timestamp, &addr);
   if (!hang_occurred && !vm_fault_occurred)
      return;

   fprintf(stderr, "radv: GPU hang detected...\n");

#ifndef _WIN32
   /* Create a directory into $HOME/radv_dumps_<pid>_<time> to save
    * various debugging info about that GPU hang.
    */
   struct tm *timep, result;
   time_t raw_time;
   FILE *f;
   char dump_dir[256], dump_path[512], buf_time[128];

   time(&raw_time);
   timep = os_localtime(&raw_time, &result);
   strftime(buf_time, sizeof(buf_time), "%Y.%m.%d_%H.%M.%S", timep);

   snprintf(dump_dir, sizeof(dump_dir), "%s/" RADV_DUMP_DIR "_%d_%s", debug_get_option("HOME", "."),
            getpid(), buf_time);
   if (mkdir(dump_dir, 0774) && errno != EEXIST) {
      fprintf(stderr, "radv: can't create directory '%s' (%i).\n", dump_dir, errno);
      abort();
   }

   fprintf(stderr, "radv: GPU hang report will be saved to '%s'!\n", dump_dir);

   /* Dump trace file. */
   snprintf(dump_path, sizeof(dump_path), "%s/%s", dump_dir, "trace.log");
   f = fopen(dump_path, "w+");
   if (f) {
      radv_dump_trace(queue->device, cs, f);
      fclose(f);
   }

   /* Dump pipeline state. */
   snprintf(dump_path, sizeof(dump_path), "%s/%s", dump_dir, "pipeline.log");
   f = fopen(dump_path, "w+");
   if (f) {
      radv_dump_queue_state(queue, dump_dir, f);
      fclose(f);
   }

   if (!(device->instance->debug_flags & RADV_DEBUG_NO_UMR)) {
      /* Dump UMR ring. */
      snprintf(dump_path, sizeof(dump_path), "%s/%s", dump_dir, "umr_ring.log");
      f = fopen(dump_path, "w+");
      if (f) {
         radv_dump_umr_ring(queue, f);
         fclose(f);
      }

      /* Dump UMR waves. */
      snprintf(dump_path, sizeof(dump_path), "%s/%s", dump_dir, "umr_waves.log");
      f = fopen(dump_path, "w+");
      if (f) {
         radv_dump_umr_waves(queue, f);
         fclose(f);
      }
   }

   /* Dump debug registers. */
   snprintf(dump_path, sizeof(dump_path), "%s/%s", dump_dir, "registers.log");
   f = fopen(dump_path, "w+");
   if (f) {
      radv_dump_debug_registers(device, f);
      fclose(f);
   }

   /* Dump BO ranges. */
   snprintf(dump_path, sizeof(dump_path), "%s/%s", dump_dir, "bo_ranges.log");
   f = fopen(dump_path, "w+");
   if (f) {
      device->ws->dump_bo_ranges(device->ws, f);
      fclose(f);
   }

   /* Dump BO log. */
   snprintf(dump_path, sizeof(dump_path), "%s/%s", dump_dir, "bo_history.log");
   f = fopen(dump_path, "w+");
   if (f) {
      device->ws->dump_bo_log(device->ws, f);
      fclose(f);
   }

   /* Dump VM fault info. */
   if (vm_fault_occurred) {
      snprintf(dump_path, sizeof(dump_path), "%s/%s", dump_dir, "vm_fault.log");
      f = fopen(dump_path, "w+");
      if (f) {
         fprintf(f, "VM fault report.\n\n");
         fprintf(f, "Failing VM page: 0x%08" PRIx64 "\n\n", addr);
         fclose(f);
      }
   }

   /* Dump app info. */
   snprintf(dump_path, sizeof(dump_path), "%s/%s", dump_dir, "app_info.log");
   f = fopen(dump_path, "w+");
   if (f) {
      radv_dump_app_info(device, f);
      fclose(f);
   }

   /* Dump GPU info. */
   snprintf(dump_path, sizeof(dump_path), "%s/%s", dump_dir, "gpu_info.log");
   f = fopen(dump_path, "w+");
   if (f) {
      radv_dump_device_name(device, f);
      ac_print_gpu_info(&device->physical_device->rad_info, f);
      fclose(f);
   }

   /* Dump dmesg. */
   snprintf(dump_path, sizeof(dump_path), "%s/%s", dump_dir, "dmesg.log");
   f = fopen(dump_path, "w+");
   if (f) {
      radv_dump_dmesg(f);
      fclose(f);
   }
#endif

   fprintf(stderr, "radv: GPU hang report saved successfully!\n");
   abort();
}

void
radv_print_spirv(const char *data, uint32_t size, FILE *fp)
{
#ifndef _WIN32
   char path[] = "/tmp/fileXXXXXX";
   char command[128];
   int fd;

   /* Dump the binary into a temporary file. */
   fd = mkstemp(path);
   if (fd < 0)
      return;

   if (write(fd, data, size) == -1)
      goto fail;

   /* Disassemble using spirv-dis if installed. */
   sprintf(command, "spirv-dis %s", path);
   radv_dump_cmd(command, fp);

fail:
   close(fd);
   unlink(path);
#endif
}

bool
radv_trap_handler_init(struct radv_device *device)
{
   struct radeon_winsys *ws = device->ws;
   VkResult result;

   /* Create the trap handler shader and upload it like other shaders. */
   device->trap_handler_shader = radv_create_trap_handler_shader(device);
   if (!device->trap_handler_shader) {
      fprintf(stderr, "radv: failed to create the trap handler shader.\n");
      return false;
   }

   result = ws->buffer_make_resident(ws, device->trap_handler_shader->bo, true);
   if (result != VK_SUCCESS)
      return false;

   result = ws->buffer_create(ws, TMA_BO_SIZE, 256, RADEON_DOMAIN_VRAM,
                              RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING |
                                 RADEON_FLAG_ZERO_VRAM | RADEON_FLAG_32BIT,
                              RADV_BO_PRIORITY_SCRATCH, 0, &device->tma_bo);
   if (result != VK_SUCCESS)
      return false;

   result = ws->buffer_make_resident(ws, device->tma_bo, true);
   if (result != VK_SUCCESS)
      return false;

   device->tma_ptr = ws->buffer_map(device->tma_bo);
   if (!device->tma_ptr)
      return false;

   /* Upload a buffer descriptor to store various info from the trap. */
   uint64_t tma_va = radv_buffer_get_va(device->tma_bo) + 16;
   uint32_t desc[4];

   desc[0] = tma_va;
   desc[1] = S_008F04_BASE_ADDRESS_HI(tma_va >> 32);
   desc[2] = TMA_BO_SIZE;
   desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
             S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
             S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);

   memcpy(device->tma_ptr, desc, sizeof(desc));

   return true;
}

void
radv_trap_handler_finish(struct radv_device *device)
{
   struct radeon_winsys *ws = device->ws;

   if (unlikely(device->trap_handler_shader)) {
      ws->buffer_make_resident(ws, device->trap_handler_shader->bo, false);
      radv_shader_variant_destroy(device, device->trap_handler_shader);
   }

   if (unlikely(device->tma_bo)) {
      ws->buffer_make_resident(ws, device->tma_bo, false);
      ws->buffer_destroy(ws, device->tma_bo);
   }
}

static void
radv_dump_faulty_shader(struct radv_device *device, uint64_t faulty_pc)
{
   struct radv_shader_variant *shader;
   uint64_t start_addr, end_addr;
   uint32_t instr_offset;

   shader = radv_find_shader_variant(device, faulty_pc);
   if (!shader)
      return;

   start_addr = radv_shader_variant_get_va(shader);
   end_addr = start_addr + shader->code_size;
   instr_offset = faulty_pc - start_addr;

   fprintf(stderr,
           "Faulty shader found "
           "VA=[0x%" PRIx64 "-0x%" PRIx64 "], instr_offset=%d\n",
           start_addr, end_addr, instr_offset);

   /* Get the list of instructions.
    * Buffer size / 4 is the upper bound of the instruction count.
    */
   unsigned num_inst = 0;
   struct radv_shader_inst *instructions =
      calloc(shader->code_size / 4, sizeof(struct radv_shader_inst));

   /* Split the disassembly string into instructions. */
   si_add_split_disasm(shader->disasm_string, start_addr, &num_inst, instructions);

   /* Print instructions with annotations. */
   for (unsigned i = 0; i < num_inst; i++) {
      struct radv_shader_inst *inst = &instructions[i];

      if (start_addr + inst->offset == faulty_pc) {
         fprintf(stderr, "\n!!! Faulty instruction below !!!\n");
         fprintf(stderr, "%s\n", inst->text);
         fprintf(stderr, "\n");
      } else {
         fprintf(stderr, "%s\n", inst->text);
      }
   }

   free(instructions);
}

struct radv_sq_hw_reg {
   uint32_t status;
   uint32_t trap_sts;
   uint32_t hw_id;
   uint32_t ib_sts;
};

static void
radv_dump_sq_hw_regs(struct radv_device *device)
{
   struct radv_sq_hw_reg *regs = (struct radv_sq_hw_reg *)&device->tma_ptr[6];

   fprintf(stderr, "\nHardware registers:\n");
   if (device->physical_device->rad_info.chip_class >= GFX10) {
      ac_dump_reg(stderr, device->physical_device->rad_info.chip_class, R_000408_SQ_WAVE_STATUS,
                  regs->status, ~0);
      ac_dump_reg(stderr, device->physical_device->rad_info.chip_class, R_00040C_SQ_WAVE_TRAPSTS,
                  regs->trap_sts, ~0);
      ac_dump_reg(stderr, device->physical_device->rad_info.chip_class, R_00045C_SQ_WAVE_HW_ID1,
                  regs->hw_id, ~0);
      ac_dump_reg(stderr, device->physical_device->rad_info.chip_class, R_00041C_SQ_WAVE_IB_STS,
                  regs->ib_sts, ~0);
   } else {
      ac_dump_reg(stderr, device->physical_device->rad_info.chip_class, R_000048_SQ_WAVE_STATUS,
                  regs->status, ~0);
      ac_dump_reg(stderr, device->physical_device->rad_info.chip_class, R_00004C_SQ_WAVE_TRAPSTS,
                  regs->trap_sts, ~0);
      ac_dump_reg(stderr, device->physical_device->rad_info.chip_class, R_000050_SQ_WAVE_HW_ID,
                  regs->hw_id, ~0);
      ac_dump_reg(stderr, device->physical_device->rad_info.chip_class, R_00005C_SQ_WAVE_IB_STS,
                  regs->ib_sts, ~0);
   }
   fprintf(stderr, "\n\n");
}

void
radv_check_trap_handler(struct radv_queue *queue)
{
   enum ring_type ring = radv_queue_family_to_ring(queue->vk.queue_family_index);
   struct radv_device *device = queue->device;
   struct radeon_winsys *ws = device->ws;

   /* Wait for the context to be idle in a finite time. */
   ws->ctx_wait_idle(queue->hw_ctx, ring, queue->vk.index_in_family);

   /* Try to detect if the trap handler has been reached by the hw by
    * looking at ttmp0 which should be non-zero if a shader exception
    * happened.
    */
   if (!device->tma_ptr[4])
      return;

#if 0
	fprintf(stderr, "tma_ptr:\n");
	for (unsigned i = 0; i < 10; i++)
		fprintf(stderr, "tma_ptr[%d]=0x%x\n", i, device->tma_ptr[i]);
#endif

   radv_dump_sq_hw_regs(device);

   uint32_t ttmp0 = device->tma_ptr[4];
   uint32_t ttmp1 = device->tma_ptr[5];

   /* According to the ISA docs, 3.10 Trap and Exception Registers:
    *
    * "{ttmp1, ttmp0} = {3'h0, pc_rewind[3:0], HT[0], trapID[7:0], PC[47:0]}"
    *
    * "When the trap handler is entered, the PC of the faulting
    *  instruction is: (PC - PC_rewind * 4)."
    * */
   uint8_t trap_id = (ttmp1 >> 16) & 0xff;
   uint8_t ht = (ttmp1 >> 24) & 0x1;
   uint8_t pc_rewind = (ttmp1 >> 25) & 0xf;
   uint64_t pc = (ttmp0 | ((ttmp1 & 0x0000ffffull) << 32)) - (pc_rewind * 4);

   fprintf(stderr, "PC=0x%" PRIx64 ", trapID=%d, HT=%d, PC_rewind=%d\n", pc, trap_id, ht,
           pc_rewind);

   radv_dump_faulty_shader(device, pc);

   abort();
}