#!/bin/sh # A Poor (but Free) Man's dtrace # # Copyright (C) 2014-2023 Free Software Foundation, Inc. # # Contributed by Oracle, Inc. # # This file is part of GDB. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see # <http://www.gnu.org/licenses/>. # DISCLAIMER DISCLAIMER DISCLAIMER # This script is a test tool. As such it is in no way intended to # replace the "real" dtrace command for any practical purpose, apart # from testing the DTrace USDT probes support in GDB. # that said... # # pdtrace is a limited dtrace program, implementing a subset of its # functionality: # # - The generation of an ELF file containing an embedded dtrace # program. Equivalent to dtrace -G. # # - The generation of a header file with definitions for static # probes. Equivalent to dtrace -h. # # This allows to generate DTrace static probes without having to use # the user-level DTrace components. The generated objects are 100% # compatible with DTrace and can be traced by the dtrace kernel module # like if they were generated by dtrace. # # Some of the known limitations of this implementation are: # - The input d-script must describe one provider, and only one. # - The "probe " directives in the d-file must not include argument # names, just the types. Thus something like `char *' is valid, but # `char *name' is not. # - The command line options must precede other arguments, since the # script uses the (more) portable getopts. # - Each probe header in the d-script must be contained in # a single line. # - strip -K removes the debugging information from the input object # file. # - The supported target platforms are i[3456]86 and x86_64. # # Please keep this code as portable as possible. Restrict yourself to # POSIX sh. # This script uses the following external programs, defined in # variables. Some of them are substituted by autoconf. TR=tr NM=@NM_TRANSFORM_NAME@ EGREP=egrep SED=sed CUT=cut READELF=@READELF_TRANSFORM_NAME@ SORT=sort EXPR=expr WC=wc UNIQ=uniq HEAD=head SEQ=seq AS=@GAS_TRANSFORM_NAME@ STRIP=@STRIP_TRANSFORM_NAME@ TRUE=true # Sizes for several DOF structures, in bytes. # # See linux/dtrace/dof.h for the definition of the referred # structures. dof_hdrsize=64 # sizeof(dtrace_dof_hdr) dof_secsize=32 # sizeof(dtrace_dof_sect) dof_probesize=48 # sizeof(dtrace_dof_probe) dof_providersize=44 # sizeof(dtrace_dof_provider) # Types for the several DOF sections. # # See linux/dtrace/dof_defines.h for a complete list of section types # along with their values. dof_sect_type_strtab=8 dof_sect_type_provider=15 dof_sect_type_probes=16 dof_sect_type_prargs=17 dof_sect_type_proffs=18 dof_sect_type_prenoffs=26 ### Functions # Write a message to the standard error output and exit with an error # status. # # Arguments: # $1 error message. f_panic() { echo "error: $1" 1>&2; exit 1 } # Write a usage message to the standard output and exit with an error # status. f_usage() { printf "Usage: pdtrace [-32|-64] [-GhV] [-o output] [-s script] [ args ... ]\n\n" printf "\t-32 generate 32-bit ELF files\n" printf "\t-64 generate 64-bit ELF files\n\n" printf "\t-G generate an ELF file containing embedded dtrace program\n" printf "\t-h generate a header file with definitions for static probes\n" printf "\t-o set output file\n" printf "\t-s handle probes according to the specified D script\n" printf "\t-V report the DTrace API version implemented by the tool\n" exit 2 } # Write a version message to the standard output and exit with a # successful status. f_version() { echo "pdtrace: Sun D 1.6.3" exit } # Add a new record to a list and return it. # # Arguments: # $1 is the list. # $2 is the new record f_add_record() { rec=$1 test -n "$rec" && \ { rec=$(printf %s\\n "$rec"; echo x); rec=${rec%x}; } printf %s "$rec$2" } # Collect the providers and probes information from the input object # file. # # This function sets the values of the following global variables. # The values are structured in records, each record in a line. The # fields of each record are separated in some cases by white # characters and in other cases by colon (:) characters. # # The type codes in the line format descriptors are: # S: string, D: decimal number # # probes # Regular probes and is-enabled probes. # TYPE(S) PROVIDER(S) NAME(S) OFFSET(D) BASE(D) BASE_SYM(S) # base_probes # Base probes, i.e. probes sharing provider, name and container. # PROVIDER(S) NAME(S) BASE(D) BASE_SYM(S) # providers # List of providers. # PROVIDER(S) # All the offsets are expressed in bytes. # # Input globals: # objfile # Output globals: # probes, base_probes, providers probes= base_probes= providers= probes_args= f_collect_probes() { # Probe points are function calls to undefined functions featuring # distinct names for both normal probes and is-enabled probes. PROBE_REGEX="(__dtrace_([a-zA-Z_]+)___([a-zA-Z_]+))" EPROBE_REGEX="(__dtraceenabled_([a-zA-Z_]+)___([a-zA-Z_]+))" while read type symbol provider name; do test -z "$type" && f_panic "No probe points found in $objfile" provider=$(printf %s $provider | $TR -s _) name=$(printf %s $name | $TR -s _) # Search the object file for relocations defined for the # probe symbols. Then calculate the base address of the # probe (along with the symbol associated with that base # address) and the offset of the probe point. for offset in $($READELF -W -r $objfile | $EGREP $symbol | $CUT -d' ' -f1) do # Figure out the base address for the probe. This is # done finding the function name in the text section of # the object file located above the probed point. But # note that the relocation is for the address operand of # the call instruction, so we have to subtract 1 to find # the real probed point. offset=$((0x$offset - 1)) # The addresses of is-enabled probes must point to the # first NOP instruction in their patched instructions # sequences, so modify them (see f_patch_objfile for the # instruction sequences). if test "$type" = "e"; then if test "$objbits" -eq "32"; then offset=$((offset + 2)) else # 64 bits offset=$((offset + 3)) fi fi # Determine the base address of the probe and its # corresponding function name. funcs=$($NM -td $objfile | $EGREP "^[0-9]+ T " \ | $CUT -d' ' -f1,3 | $SORT -n -r | $TR ' ' :) for fun in $funcs; do func_off=$(printf %s $fun | $CUT -d: -f1) func_sym=$(printf %s $fun | $CUT -d: -f2) # Note that `expr' is used to remove leading zeros # to avoid FUNC_OFF to be interpreted as an octal # number in arithmetic contexts. test "$func_off" -le "$offset" && \ { base=$($EXPR $func_off + 0); break; } done test -n "$base" || \ f_panic "could not find base address for probe at $objfile($o)" # Emit the record for the probe. probes=$(f_add_record "$probes" \ "$type $provider $name $(($offset - $base)) $base $func_sym") done done <<EOF $($NM $objfile | $EGREP " U $PROBE_REGEX" \ | $SED -E -e "s/.*$PROBE_REGEX.*/p \1 \2 \3/"; $NM $objfile | $EGREP " U $EPROBE_REGEX" \ | $SED -E -e "s/.*$EPROBE_REGEX.*/e \1 \2 \3/") EOF # Build the list of providers and of base probes from the probes. while read type provider name offset base base_sym; do providers=$(f_add_record "$providers" "$provider") base_probes=$(f_add_record "$base_probes" "$provider $name $base $base_sym") done <<EOF $probes EOF providers=$(printf %s\\n "$providers" | $SORT | $UNIQ) base_probes=$(printf %s\\n "$base_probes" | $SORT | $UNIQ) } # Collect the argument counts and type strings for all the probes # described in the `probes' global variable. This is done by # inspecting the d-script file provided by the user. # # This function sets the values of the following global variables. # The values are structured in records, each record in a line. The # fields of each record are separated in some cases by white # characters and in other cases by colon (:) characters. # # The type codes in the line format descriptors are: # S: string, D: decimal number # # probes_args # Probes arguments. # PROVIDER(S):NAME(S):NARGS(D):ARG1(S):ARG2(S):...:ARGn(S) # # Input globals: # probes # Output globals: # probes_args # Arguments: # $1 is the d-script file from which to extract the arguments # information. f_collect_probes_args() { dscript=$1 while read type provider name offset base base_sym; do # Process normal probes only. Is-enabled probes are not # described in the d-script file and they don't receive any # argument. test "$type" = "p" || continue # Names are mangled in d-script files to make it possible to # have underscore characters as part of the provider name and # probe name. m_provider=$(printf %s $provider | $SED -e 's/_/__/g') m_name=$(printf %s $name | $SED -e 's/_/__/g') # Ignore this probe if the d-script file does not describe its # provider. $EGREP -q "provider +$m_provider" $dscript || continue # Look for the line containing the description of the probe. # If we can't find it then ignore this probe. line=$($EGREP "^ *probe +$m_name *\(.*\);" $dscript) test -n "$line" || continue # Ok, extract the argument types from the probe prototype. # This is fragile as hell as it requires the prototype to be # in a single line. args=""; nargs=0; line=$(printf %s "$line" | $SED -e 's/.*(\(.*\)).*/\1/') set -f; IFS=, for arg in $line; do args="$args:$arg" nargs=$((nargs + 1)) done set +f; unset IFS # Emit the record for the probe arguments. probes_args=$(f_add_record "$probes_args" "$provider:$name:$nargs$args") done <<EOF $probes EOF } # Functions to manipulate the global BCOUNT. BCOUNT=0 f_incr_bcount() { BCOUNT=$((BCOUNT + $1)) } f_align_bcount() { test $((BCOUNT % $1)) -eq 0 || BCOUNT=$((BCOUNT + ($1 - (BCOUNT % $1)))) } # Generate a line of assembly code and add it to the asmprogram global # variable. # # Arguments: # $1 string to generate in a line. asmprogram= f_gen_asm() { line=$(printf "\t$1") asmprogram=$(f_add_record "$asmprogram" "$line") } # Helper function to generate the assembly code of a DOF section # header. # # This function is used by `f_gen_dof_program'. # # Arguments: # $1 is the name of the described section. # $2 is the type of the described section. # $3 is the alignment of the described section. # $4 is the number of entities stored in the described section. # $5 is the offset in the DOF program of the described section. # $6 is the size of the described section, in bytes. f_gen_dof_sect_header() { f_gen_asm "" f_gen_asm "/* dtrace_dof_sect for the $1 section. */" f_gen_asm ".balign 8" f_gen_asm ".4byte $2\t/* uint32_t dofs_type */" f_gen_asm ".4byte $3\t/* uint32_t dofs_align */" # The DOF_SECF_LOAD flag is 1 => loadable section. f_gen_asm ".4byte 1\t/* uint32_t dofs_flags */" f_gen_asm ".4byte $4\t/* uint32_t dofs_entsize */" f_gen_asm ".8byte $5\t/* uint64_t dofs_offset */" f_gen_asm ".8byte $6\t/* uint64_t dofs_size */" } # Generate a DOF program and assembly it in the output file. # # The DOF program generated by this function has the following # structure: # # HEADER # STRTAB OFFTAB EOFFTAB [PROBES PROVIDER]... # STRTAB_SECT OFFTAB_SECT EOFFTAB_SECT ARGTAB_SECT [PROBES_SECT PROVIDER_SECT]... # # Input globals: # probes, base_probes, providers, probes_args, BCOUNT f_gen_dof_program() { ###### Variables used to cache information needed later. # Number of section headers in the generated DOF program. dof_secnum=0 # Offset of section headers in the generated DOF program, in bytes. dof_secoff=0 # Sizes of the STRTAB, OFFTAB and EOFFTAB sections, in bytes. strtab_size=0 offtab_size=0 eofftab_size=0 # Offsets of the STRTAB, OFFTAB EOFFTAB and PROBES sections in the # generated DOF program. In bytes. strtab_offset=0 offtab_offset=0 eofftab_offset=0 argtab_offset=0 probes_offset=0 # Indexes of the section headers of the STRTAB, OFFTAB, EOFFTAB and # PROBES sections in the sections array. strtab_sect_index=0 offtab_sect_index=0 eofftab_sect_index=0 argtab_sect_index=0 probes_sect_index=0 # First offsets and eoffsets of the base-probes. # Lines: PROVIDER(S) NAME(S) BASE(D) (DOF_OFFSET(D)|DOF_EOFFSET(D)) probes_dof_offsets= probes_dof_eoffsets= # Offsets in the STRTAB section for the first type of base probes. # Record per line: PROVIDER(S) NAME(S) BASE(D) OFFSET(D) probes_dof_types= # Offsets of the provider names in the provider's STRTAB section. # Lines: PROVIDER(S) OFFSET(D) providers_dof_names= # Offsets of the base-probe names in the provider's STRTAB section. # Lines: PROVIDER(S) NAME(S) BASE(D) OFFSET(D) probes_dof_names= # Offsets of the provider sections in the DOF program. # Lines: PROVIDER(S) OFFSET(D) providers_offsets= ###### Generation phase. # The header of the DOF program contains a `struct # dtrace_dof_hdr'. Record its size, but it is written at the end # of the function. f_incr_bcount $dof_hdrsize; f_align_bcount 8 # The STRTAB section immediately follows the header. It contains # the following set of packed null-terminated strings: # # [PROVIDER [BASE_PROBE_NAME [BASE_PROBE_ARG_TYPE...]]...]... strtab_offset=$BCOUNT strtab_sect_index=$dof_secnum dof_secnum=$((dof_secnum + 1)) f_gen_asm "" f_gen_asm "/* The STRTAB section. */" f_gen_asm ".balign 8" # Add the provider names. off=0 while read provider; do strtab_size=$(($strtab_size + ${#prov} + 1)) # Note the funny mangling... f_gen_asm ".asciz \"$(printf %s $provider | $TR _ -)\"" providers_dof_names=$(f_add_record "$providers_dof_names" \ "$provider $off") off=$(($off + ${#provider} + 1)) # Add the base-probe names. while read p_provider name base base_sym; do test "$p_provider" = "$provider" || continue # And yes, more funny mangling... f_gen_asm ".asciz \"$(printf %s $name | $TR _ -)\"" probes_dof_names=$(f_add_record "$probes_dof_names" \ "$p_provider $name $base $off") off=$(($off + ${#name} + 1)) while read args; do a_provider=$(printf %s "$args" | $CUT -d: -f1) a_name=$(printf %s "$args" | $CUT -d: -f2) test "$a_provider" = "$p_provider" \ && test "$a_name" = "$name" \ || continue probes_dof_types=$(f_add_record "$probes_dof_types" \ "$a_provider $name $base $off") nargs=$(printf %s "$args" | $CUT -d: -f3) for n in $($SEQ $nargs); do arg=$(printf %s "$args" | $CUT -d: -f$(($n + 3))) f_gen_asm ".asciz \"${arg}\"" off=$(($off + ${#arg} + 1)) done done <<EOF $probes_args EOF done <<EOF $base_probes EOF done <<EOF $providers EOF strtab_size=$off f_incr_bcount $strtab_size; f_align_bcount 8 # The OFFTAB section contains a set of 32bit words, one per # defined regular probe. offtab_offset=$BCOUNT offtab_sect_index=$dof_secnum dof_secnum=$((dof_secnum + 1)) f_gen_asm "" f_gen_asm "/* The OFFTAB section. */" f_gen_asm ".balign 8" off=0 while read type provider name offset base base_sym; do test "$type" = "p" || continue f_gen_asm ".4byte $offset\t/* probe ${provider}:${name} */" probes_dof_offsets=$(f_add_record "$probes_dof_offsets" \ "$provider $name $base $off") off=$(($off + 4)) done <<EOF $probes EOF offtab_size=$off f_incr_bcount $offtab_size; f_align_bcount 8 # The EOFFTAB section contains a set of 32bit words, one per # defined is-enabled probe. eofftab_offset=$BCOUNT eofftab_sect_index=$dof_secnum dof_secnum=$((dof_secnum + 1)) f_gen_asm "" f_gen_asm "/* The EOFFTAB section. */" f_gen_asm ".balign 8" off=0 while read type provider name offset base base_sym; do test "$type" = "e" || continue f_gen_asm ".4byte $offset\t/* is-enabled probe ${provider}:${name} */" probes_dof_eoffsets=$(f_add_record "$probes_dof_eoffsets" \ "$provider $name $base $off") off=$(($off + 4)) done <<EOF $probes EOF eofftab_size=$off f_incr_bcount $eofftab_size; f_align_bcount 8 # The ARGTAB section is empty, but nonetheless has a section # header, so record its section index here. argtab_offset=0 argtab_sect_index=$dof_secnum dof_secnum=$((dof_secnum + 1)) # Generate a pair of sections PROBES and PROVIDER for each # provider. while read prov; do # The PROBES section contains an array of `struct # dtrace_dof_probe'. # # A `dtrace_dof_probe' entry characterizes the collection of # probes and is-enabled probes sharing the same provider, name and # base address. probes_sect_index=$dof_secnum dof_secnum=$((dof_secnum + 1)) probes_offset=$BCOUNT num_base_probes=$(printf %s\\n "$base_probes" | $WC -l) while read provider name base base_sym; do name_offset=$(printf %s\\n "$probes_dof_names" \ | $EGREP "^$provider $name " | $CUT -d' ' -f4) num_offsets=$(printf %s\\n "$probes_dof_offsets" \ | $EGREP "^$provider $name [0-9]+ " | $WC -l) first_offset=0 test "$num_offsets" -gt 0 && \ first_offset=$(printf %s\\n "$probes_dof_offsets" \ | $EGREP "^$provider $name " | $CUT -d' ' -f4 | $HEAD -1) num_eoffsets=$(printf %s\\n "$probes_dof_eoffsets" \ | $EGREP "^$provider $name [0-9]+ " | $WC -l) first_eoffset=0 test "$num_eoffsets" -gt 0 && \ first_eoffset=$(printf %s "$probes_dof_eoffsets" \ | $EGREP "^$provider $name " | $CUT -d' ' -f4 | $HEAD -1) num_args=$(printf %s "$probes_args" \ | $EGREP "^$provider:$name:" | $CUT -d: -f3 | $HEAD -1) first_type=$(printf %s "$probes_dof_types" \ | $EGREP "^$provider $name $base " | $CUT -d' ' -f4 | $HEAD -1) reloctype=R_X86_64_GLOB_DAT test "$objbits" = "32" && reloctype=R_386_32 f_gen_asm "" f_gen_asm "/* dtrace_dof_probe for ${provider}:${name} at ${base_sym} */" f_gen_asm ".balign 8" f_gen_asm ".reloc ., $reloctype, $base_sym + 0" f_gen_asm ".8byte ${base}\t/* uint64_t dofpr_addr */" f_gen_asm ".4byte 0\t/* uint32_t dofpr_func */" f_gen_asm ".4byte $name_offset\t/* uint32_t dofpr_name */" f_gen_asm ".4byte $first_type\t/* uint32_t dofpr_nargv */" f_gen_asm ".4byte 0\t/* uint32_t dofpr_xargv */" f_gen_asm ".4byte 0\t/* uint32_t dofpr_argidx */" f_gen_asm ".4byte $(($first_offset/4))\t/* uint32_t dofpr_offidx */" f_gen_asm ".byte $num_args\t/* uint8_t dofpr_nargc */" f_gen_asm ".byte 0\t/* uint8_t dofpr_xargc */" f_gen_asm ".2byte $num_offsets\t/* uint16_t dofpr_noffs */" f_gen_asm ".4byte $(($first_eoffset/4))\t/* uint32_t dofpr_enoffidx */" f_gen_asm ".2byte $num_eoffsets\t/* uint16_t dofpr_nenoffs */" f_gen_asm ".2byte 0\t/* uint16_t dofpr_pad1 */" f_gen_asm ".4byte 0\t/* uint16_t dofpr_pad2 */" f_incr_bcount "$dof_probesize" done <<EOF $base_probes EOF # The PROVIDER section contains a `struct dtrace_dof_provider' # instance describing the provider for the probes above. dof_secnum=$((dof_secnum + 1)) providers_offsets=$(f_add_record "$providers_offsets" \ "$prov $BCOUNT") # The dtrace_dof_provider. provider_name_offset=$(printf %s "$providers_dof_names" \ | $EGREP "^$prov " | $CUT -d' ' -f2) f_gen_asm "" f_gen_asm "/* dtrace_dof_provider for $prov */" f_gen_asm ".balign 8" # Links to several DOF sections. f_gen_asm ".4byte $strtab_sect_index\t/* uint32_t dofpv_strtab */" f_gen_asm ".4byte $probes_sect_index\t/* uint32_t dofpv_probes */" f_gen_asm ".4byte $argtab_sect_index\t/* uint32_t dofpv_prargs */" f_gen_asm ".4byte $offtab_sect_index\t/* uint32_t dofpv_proffs */" # Offset of the provider name into the STRTAB section. f_gen_asm ".4byte $provider_name_offset\t/* uint32_t dofpv_name */" # The rest of fields can be 0 for our modest purposes :) f_gen_asm ".4byte 0\t/* uint32_t dofpv_provattr */" f_gen_asm ".4byte 0\t/* uint32_t dofpv_modattr */" f_gen_asm ".4byte 0\t/* uint32_t dofpv_funcattr */" f_gen_asm ".4byte 0\t/* uint32_t dofpv_nameattr */" f_gen_asm ".4byte 0\t/* uint32_t dofpv_argsattr */" # But not this one, of course... f_gen_asm ".4byte $eofftab_sect_index\t/* uint32_t dofpv_prenoffs */" f_incr_bcount $dof_providersize done<<EOF $providers EOF f_align_bcount 8 # The section headers follow, one per section defined above. dof_secoff=$BCOUNT f_gen_dof_sect_header STRTAB \ $dof_sect_type_strtab \ 1 1 $strtab_offset $strtab_size f_incr_bcount $dof_secsize; f_align_bcount 8 f_gen_dof_sect_header OFFTAB \ $dof_sect_type_proffs \ 4 4 $offtab_offset $offtab_size f_incr_bcount $dof_secsize; f_align_bcount 8 f_gen_dof_sect_header EOFFTAB \ $dof_sect_type_prenoffs \ 4 4 $eofftab_offset $eofftab_size f_incr_bcount $dof_secsize; f_align_bcount 8 f_gen_dof_sect_header ARGTAB \ $dof_sect_type_prargs \ 4 1 $argtab_offset 0 f_incr_bcount $dof_secsize; f_align_bcount 8 while read provider; do provider_offset=$(printf %s "$providers_offsets" \ | $EGREP "^$provider " | $CUT -d' ' -f2) num_base_probes=$(printf %s\\n "$base_probes" | $WC -l) f_gen_dof_sect_header "$provider probes" \ $dof_sect_type_probes \ 8 $dof_probesize $probes_offset \ $((num_base_probes * dof_probesize)) f_incr_bcount $dof_secsize; f_align_bcount 8 f_gen_dof_sect_header "$provider provider" \ $dof_sect_type_provider \ 8 1 $provider_offset $dof_providersize f_incr_bcount $dof_secsize; f_align_bcount 8 done <<EOF $providers EOF # Finally, cook the header. asmbody="$asmprogram" asmprogram="" f_gen_asm "/* File generated by pdtrace. */" f_gen_asm "" f_gen_asm ".section .SUNW_dof,\"a\",\"progbits\"" f_gen_asm ".globl __SUNW_dof" f_gen_asm ".hidden __SUNW_dof" f_gen_asm ".size __SUNW_dof, ${BCOUNT}" f_gen_asm ".type __SUNW_dof, @object" f_gen_asm "__SUNW_dof:" f_gen_asm "" f_gen_asm "/* dtrace_dof_hdr */" f_gen_asm ".balign 8" f_gen_asm ".byte 0x7f, 'D, 'O, 'F\t/* dofh_ident[0..3] */" f_gen_asm ".byte 2\t\t/* model: 1=ILP32, 2=LP64 */" f_gen_asm ".byte 1\t\t/* encoding: 1: little-endian, 2: big-endian */" f_gen_asm ".byte 2\t\t/* DOF version: 1 or 2. Latest is 2 */" f_gen_asm ".byte 2\t\t/* DIF version: 1 or 2. Latest is 2 */" f_gen_asm ".byte 8\t\t/* number of DIF integer registers */" f_gen_asm ".byte 8\t\t/* number of DIF tuple registers */" f_gen_asm ".byte 0, 0\t\t/* dofh_ident[10..11] */" f_gen_asm ".4byte 0\t\t/* dofh_ident[12..15] */" f_gen_asm ".4byte 0\t/* uint32_t dofh_flags */" # See Limitations above. f_gen_asm ".4byte ${dof_hdrsize}\t/* uint32_t dofh_hdrsize */" f_gen_asm ".4byte ${dof_secsize}\t/* uint32_t dofh_secsize */" f_gen_asm ".4byte ${dof_secnum}\t/* uint32_t dofh_secnum */" f_gen_asm ".8byte ${dof_secoff}\t/* uint64_t dofh_secoff */" f_gen_asm ".8byte ${BCOUNT}\t/* uint64_t dofh_loadsz */" f_gen_asm ".8byte ${BCOUNT}\t/* uint64_t dofh_filesz */" f_gen_asm ".8byte 0\t/* uint64_t dofh_pad */" f_gen_asm "" # Ok, now assembly the program in OFILE echo "$asmprogram$asmbody" | $AS -$objbits -o $ofile # Next step is to change the sh_type of the ".SUNW_dof" section # headers to 0x6ffffff4 (SHT_SUNW_dof). # # Note that this code relies in the fact that readelf will list # the sections ordered in the same order than the section headers # in the section header table of the file. elfinfo=$($READELF -a $ofile) # Mind the endianness. if printf %s "$elfinfo" | $EGREP -q "little endian"; then sht_sunw_dof=$(printf %s%s%s%s \\364 \\377 \\377 \\157) else sht_sunw_dof=$(printf %s%s%s%s \\157 \\377 \\377 \\364) fi shdr_start=$(printf %s "$elfinfo" \ | $EGREP "^[ \t]*Start of section headers:" \ | $SED -E -e 's/.*headers:[ \t]*([0-9]+).*/\1/') test -n "$shdr_start" \ || f_panic "could not extract the start of shdr from $ofile" shdr_num_entries=$(printf %s "$elfinfo" \ | $EGREP "^[ \t]*Size of section headers:" \ | $SED -E -e 's/.*headers:[ \t]*([0-9]+).*/\1/') test -n "$shdr_num_entries" \ || f_panic "could not extract the number of shdr entries from $ofile" shdr_entry_size=$(printf %s "$elfinfo" \ | $EGREP "^[ \t]*Size of section headers:" \ | $SED -E -e 's/.*headers:[ \t]*([0-9]+).*/\1/') test -n "$shdr_entry_size" \ || f_panic "could not fetch the size of section headers from $ofile" while read line; do data=$(printf %s "$line" \ | $SED -E -e 's/.*\[(.*)\][ \t]+([a-zA-Z_.]+).*/\1:\2/') num=$(printf %s "$data" | $CUT -d: -f1) name=$(printf %s "$data" | $CUT -d: -f2) if test "$name" = ".SUNW_dof"; then # Patch the new sh_type in the proper entry of the section # header table. printf "$sht_sunw_dof" \ | dd of=$ofile conv=notrunc count=4 ibs=1 bs=1 \ seek=$((shdr_start + (shdr_entry_size * num) + 4)) \ 2> /dev/null break fi done <<EOF $(printf %s "$elfinfo" | $EGREP "^[ \t]*\[[0-9 ]+\].*[A-Z]+.*PROGBITS") EOF } # Patch the probed points in the given object file, replacing the # function calls with NOPs. # # The probed points in the input object files are function calls. # This function replaces these function calls by some other # instruction sequences. Which replacement to use depends on several # factors, as documented below. # # Arguments: # $1 is the object file to patch. f_patch_objfile() { objfile=$1 # Several x86_64 instruction opcodes, in octal. x86_op_nop=$(printf \\220) x86_op_ret=$(printf \\303) x86_op_call=$(printf \\350) x86_op_jmp32=$(printf \\351) x86_op_rex_rax=$(printf \\110) x86_op_xor_eax_0=$(printf \\063) x86_op_xor_eax_1=$(printf \\300) # Figure out the file offset of the text section in the object # file. text_off=0x$(objdump -j .text -h $objfile \ | grep \.text | $TR -s ' ' | $CUT -d' ' -f 7) while read type provider name offset base base_sym; do # Calculate the offset of the probed point in the object file. # Note that the `offset' of is-enabled probes is tweaked in # `f_collect_probes" to point ahead the patching point. probe_off=$((text_off + base + offset)) if test "$type" = "e"; then if test "$objbits" -eq "32"; then probe_off=$((probe_off - 2)) else # 64 bits probe_off=$((probe_off - 3)) fi fi # The probed point can be either a CALL instruction or a JMP # instruction (a tail call). This has an impact on the # patching sequence. Fetch the first byte at the probed point # and do the right thing. nopret="$x86_op_nop" byte=$(dd if=$objfile count=1 ibs=1 bs=1 skip=$probe_off 2> /dev/null) test "$byte" = "$x86_op_jmp32" && nopret="$x86_op_ret" # Determine the patching sequence. It depends on the type of # probe at hand (regular or is-enabled) and also if # manipulating a 32bit or 64bit binary. patchseq= case $type in p) patchseq=$(printf %s%s%s%s%s \ "$nopret" \ "$x86_op_nop" \ "$x86_op_nop" \ "$x86_op_nop" \ "$x86_op_nop") ;; e) test "$objbits" -eq 64 && \ patchseq=$(printf %s%s%s%s%s \ "$x86_op_rex_rax" \ "$x86_op_xor_eax_0" \ "$x86_op_xor_eax_1" \ "$nopret" \ "$x86_op_nop") test "$objbits" -eq 32 && \ patchseq=$(printf %s%s%s%s%s \ "$x86_op_xor_eax_0" \ "$x86_op_xor_eax_1" \ "$nopret" \ "$x86_op_nop" \ "$x86_op_nop") ;; *) f_panic "internal error: wrong probe type $type";; esac # Patch! printf %s "$patchseq" \ | dd of=$objfile conv=notrunc count=5 ibs=1 bs=1 seek=$probe_off 2> /dev/null done <<EOF $probes EOF # Finally, we have to remove the __dtrace_* and __dtraceenabled_* # symbols from the object file, along with their respective # relocations. # # Note that the most obvious call: # strip -v -N whatever -w foo.o # will not work: # strip: not stripping symbol `whatever' because it is named in a relocation # # Fortunately using `-K !whatever' instead tricks strip to do the # right thing, but this is black magic and may eventually stop # working... $STRIP -K '!__dtrace_*' -w $objfile $STRIP -K '!__dtraceenabled_*' -w $objfile } # Read the input .d file and print a header file with macros to # invoke the probes defined in it. f_gen_header_file() { guard=$(basename $ofile | $TR - _ | $CUT -d. -f1 | $TR a-z A-Z) printf "/*\n * Generated by pdtrace.\n */\n\n" printf "#ifndef _${guard}_H\n" printf "#define _${guard}_H\n\n" printf "#include <unistd.h>\n" printf "#include <inttypes.h>\n" printf \\n\\n printf "#ifdef __cplusplus\nextern \"C\" {\n#endif\n" printf "#define _DTRACE_VERSION 1\n\n" provider=$(cat $dfile | $EGREP "^ *provider +([a-zA-Z_]+)" \ | $SED -E -e 's/^ *provider +([a-zA-Z]+).*/\1/') test -z "$provider" \ && f_panic "unable to parse the provider name from $dfile." u_provider=$(printf %s "$provider" | $TR a-z A-Z | $TR -s _) cat $dfile | $EGREP "^ *probe +[a-zA-Z_]+ *\(.*\);" | \ while read line; do # Extract the probe name. name=$(printf %s "$line" \ | $SED -E -e 's/^ *probe +([a-zA-Z_]+).*/\1/') u_name=$(printf %s "$name" | $TR a-z A-Z | $TR -s _) # Generate an arg1,arg2,...,argN line for the probe. args=""; nargs=0; aline=$(printf %s "$line" | $SED -e 's/.*(\(.*\)).*/\1/') set -f; IFS=, for arg in $aline; do args="${args}arg${nargs}," nargs=$((nargs + 1)) done set +f; unset IFS args=${args%,} echo "#if _DTRACE_VERSION" echo "" # Emit the macros for the probe. echo "#define ${u_provider}_${u_name}($args) \\" echo " __dtrace_${provider}___${name}($args)" echo "#define ${u_provider}_${u_name}_ENABLED() \\" echo " __dtraceenabled_${provider}___${name}()" # Emit the extern definitions for the probe dummy # functions. echo "" printf %s\\n "$line" \ | $SED -E -e "s/^ *probe +/extern void __dtrace_${provider}___/" echo "extern int __dtraceenabled_${provider}___${name}(void);" printf "\n#else\n" # Emit empty macros for the probe echo "#define ${u_provider}_${u_name}($args)" echo "#define ${u_provider}_${u_name}_ENABLED() (0)" printf "\n#endif /* _DTRACE_VERSION */\n" done printf "#ifdef __cplusplus\n}\n#endif\n\n" printf "#endif /* _${guard}_H */\n" } ### Main program. # Process command line arguments. test "$#" -eq "0" && f_usage genelf=0 genheader=0 objbits=64 ofile= dfile= while getopts VG3264hs:o: name; do case $name in V) f_version;; s) dfile="$OPTARG"; test -f "$dfile" || f_panic "cannot read $dfile";; o) ofile="$OPTARG";; G) genelf=1;; h) genheader=1;; # Note the trick to support -32 3) objbits=666;; 2) test "$objbits" -eq 666 || f_usage; objbits=32;; # Likewise for -64 6) objbits=777;; 4) test "$objbits" -eq 777 || f_usage; objbits=64;; ?) f_usage;; esac done shift $(($OPTIND - 1)) test "$objbits" -eq "32" || test "$objbits" -eq "64" \ || f_usage test $((genelf + genheader)) -gt 1 && \ { echo "Please use either -G or -h."; f_usage; } test -n "$dfile" || { echo "Please specify a .d file with -s."; exit 2; } if test "$genelf" -gt 0; then # In this mode there must be a remaining argument: the name of the # object file to inspect for probed points. test "$#" -ne "1" && f_usage test -f "$1" || f_panic "cannot read $1" objfile=$1 # Collect probe information from the input object file and the # d-script. f_collect_probes $objfile f_collect_probes_args $dfile # Generate the assembly code and assemble the DOF program in # OFILE. Then patch OBJFILE to remove the dummy probe calls. f_gen_dof_program f_patch_objfile $objfile fi if test "$genheader" -gt 0; then test -n "$ofile" || { echo "Please specify an output file with -o."; exit 2; } # In this mode no extra arguments shall be present. test "$#" -ne "0" && f_usage f_gen_header_file > $ofile fi # pdtrace ends here.