
Basics
Index Notation 1 Whenever a quantity is summed over an
index which appears exactly twice in each term in the sum, we
leave out the summation sign. Such an index is called a dummy
index. 2 An index appearing only once is called a free index. 3
No index may appear three times in a term. But one index can
appear multiple times in an equation. A term is the basic unit in
index notation. For example,

xikyjk+aikbik = ai+bj means
∑
k

xikyjk+
∑
k

aikbik = ai+bj

Definitions The Kronecker delta δij := 1 iff i = j else 0.
We define the Levi-Civita symbol εijk for 1 ≤ i, j, k ≤ 3

to be 1 0 iff (i, j, k) is not a permutation of (1, 2, 3). 2
1 iff (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}. 3 −1 iff (i, j, k) ∈
{(1, 3, 2), (2, 1, 3), (3, 2, 1)}. That is, εijk equals to the parity
of the permutation (1, 2, 3) → (i, j, k). Similarly, in 2D, εij is 1
whenever (i, j) = (1, 2), −1 when (i, j) = (2, 1), and 0 otherwise.

1 The double dot product is A : B :=
∑

i

∑
j AijBij L1.

2 When one operand of the dot product is a matrix, it is in-
terpreted as matrix multiplication. 3 If we apply gradiant to
a vector-valued function f(x), then we are putting the gradi-
ant of each component of it into a column of the result matrix:
∇f := [(∇f1)

T , . . . , (∇fn)
T ] L2.

1 The divergence of P, ∇ · P :=
∑

i
∂Pi

∂xi
, as if ∇ =

( ∂
∂x1

, . . . , ∂
∂xn

). It represents the source/sink of a v field. NOTE

Distinguish ∇ · P vs ∇P R2! 2 The Laplace operator (Lapla-
cian) is defined as the divergence of the gradiant of function f ,
∇2f := ∇ · ∇f . Rarely, we may use ∆ for it. 3 The curl of P
is defined as ∇ × P = ( ∂v3

∂x2
− ∂v2

∂x3
,−( ∂v3∂x1

− ∂v1

∂x3
), ∂v2

∂x1
− ∂v1

∂x2
). It

represents the vorticity of a v field.

Facts 1 The area of a parallellogram equals |a × b|. 2 The

volume of a parallelpiped equals |a · (b × c)| = det(a,b, c). 3
a× b = εijkeiajbk. 4 εijkεimn = δjmδkn − δjnδkm.

Change of basis For vectors and matrices.

For vectors Let U be a finite n-dimensional vector space over
field F . Let (ui)

n
i=1 and (vi)

n
i=1 be two ordered bases of U . Let x

be any vector in U . Then, there exists two unique scalar sequences
(ai)

n
i=1 and (bi)

n
i=1 such that

∑n
i=1 aiui =

∑n
i=1 bivi. They are

also vectors in their own, in the vector space Fn. We want to find
the change of basis function T : (ai)

n
i=1 7→ (bi)

n
i=1, which exists

since (vi)
n
i=1 is a basis.

T may be broken down into T = f ◦g where g((ai)
n
i=1) := aiui,

and f(x ∈ U) := (bi)
n
i=1 such that bivi = x. It is clear that both

f and g are linear, and thus T is a linear function Fn → Fn.
We then seek its unique matrix representation under the stan-

dard basis (ei)
n
i=1 of Fn: [T ] = [T (e1)

T , · · · , T (en)T ].
NOTE When U = Fn and if we happen to use the standard

basis of Fn, then x will appear exactly the same as (ai)
n
i=1, which

can be extremely confusing. We must constantly remind ourselves
that T operates on the coordinate vectors and not directly on x,
which is the same vector regardless of the basis used to represent
it as coordinates.
Change back Since (ui)

n
i=1 is a basis (it spans U and each

(ai)
n
i=1 is unique), T is invertible. Then, indeed, the function

T−1 will be the change-back funcstion. As another way, one may
swap the places of (ui) and (vi) in the above discussion.

For matrices Let f be a linear function U → U . Under any
basis B = (ui)

n
i=1, f has a unique matrix representation [f ]B . It

is interesting to us how the matrix changes when we use another
basis B′ = (vi)

n
i=1 as the coordinate frame to get [f ]B′ .

Let x ∈ U be any vector, and denote f(x) =: y. Let (ai)
n
i=1

be the coordinates of x under basis B, (bi)
n
i=1 be the coordinates

of y under B, and (a′i)
n
i=1, (b

′
i)

n
i=1 be the coordinates for them

under B′. Now, consider the change-of-basis function T changing
the coordinate frame under B to B′, then, since f and x don’t
change for the basis, we should have
[f ]BT

−1(a′i)
n
i=1 = T−1(b′i)

n
i=1 → T [f ]BT

−1(a′i)
n
i=1 = (b′i)

n
i=1

Thus [f ]B′ = T [f ]BT
−1. NOTE If we are talking about orthog-

normal bases, then T will be an orthognormal matrix, resulting
in T−1 = TT .
Invariants Formally, we define an invariant to be any function
on such matrices such that f(M) = f(TMT−1) for all applicable
matrices M,T . Three frequent invariants are 1 trM 2 detM
3 M11M22 +M22M33 +M11M33 −M2

12 −M2
23 −M2

31.

Stress Stress describes the forces present during the defor-
mation of a material. It expresses the internal forces that neigh-
bouring particles of a continuous material exert on each other.

Cauchy stress tensor Cauchy observed that the stress vector

across a surface will always be a linear function of the surface’s
normal vector. The matrix for this function (under a fixed basis)
can be treated as a tensor and called the Cauchy stress tensor.

For whatever reason, people chose to call the value of the
Cauchy stress tensor function a traction vector, and use stress
to refer to the matrix (tensor) of the function. NOTE In practice
we assume the function takes normalized normals.

Under the standard basis, by the principle of conservation of
angular momentum, the matrix can be shown to be symmetric
L3. Thus, the traction vector can be computed by either [σ]n or
[σ]Tn. In the lecture the second way is used.

Normal & shear tractions For a traction vector, one can di-

vide it into two components, 1 Normal traction, which is parallel
to the surface normal n, 2 Shear traction, which is perpendicular
to the normal n. One can easily calculate the normal traction
tn = (t ·n)n. Then, the shear traction is ts = t− tn. NOTE We
may abuse notation sometimes to refer to the magnitude of the
traction as traction. NOTE We also define the change in angle
between two normalized vectors under a stress tensor σ to be (by
symmetry), 2v1[σ]v

T
2 = 2v2[σ]v

T
1 .

Infinitesimal strain The infinitesimal strain theory is an ide-
alized theory in which one can arrive at simple formulae for
deformation. Under this, the spatial and material coordi-
nates are approximately the same, and we have the infinites-
imal displacement/strain tensor ϵ = 1/2((∇xu)

T + ∇xu) L4
and the infinitesimal rotation tensor ω = 1/2(∇xu − (∇xu)

T ),
where u(x, . . . ) is the displacement vector field, and ∇xu =
[(∇xu1)

T , · · · , (∇xun)
T ] R2.

About ϵ, an original location vector x’s deformation will be
described by it in such a way that x′ = ϵx. We have 1 The
diagonal elements of ϵ represent fractional length changes. E.g.,
if x ∥ e1, then ϵ11 = (|x′| − |x|)/|x|). 2 Thus, tr ϵ = ∇ · u is the
fractional change in volume. 3 Off-diagonal elements represent
changes in angle. This is because, the angle, for unit vectors, is
arccos of x · x′ = x · (ϵx) = xϵxT . 4 As such, 2ϵij , i ̸= j is the
change in angle between ei and ej after the deformation. Also,
given p ⊥ q, 2qϵpT is the change in angle between them.

Material vs spatial Suppose we are interested in some

physical property P of some material in space. 1 In material
(Lagrangian) specification, the observer’s eyes follows a particu-
lar particle, and the property is a function of the particle’s initial
location ξ and the time t: P(ξ, t). 2 In spatial (Eulerian) specifi-
cation, the observer does not follow any particle but instead gives
a global description of the space, resulting in function P(x, t),
giving the property for the particle at location x at time t.

Their link Suppose we are given a spatial description P(x, t),
and would like to use this to follow a specific particle to give a
material description to it. Then, x, for the particle, is a function:
x(ξ, t), and P becomes P(x(ξ, t), t). Specifically, if we want to
find ∂P

∂t , then we need to use the chain rule to get
∂P

∂x

∂x

∂t
+

∂P

∂t

∂t

∂t
=

∂P

∂x
v(ξ, t) +

∂P

∂t
=

∑
i

∂P

∂xi
vi(ξ, t) +

∂P

∂t

Equations

Terms 1 Steady state means everything is constant w.r.t. time

t. 2 No flow means velocity v = 0. 3 No strain, stress means



the strain, stress tensors σ, ϵ = 0.

of mass For the conservation of mass, 1 In spatial description,

we have ∂ρ
∂t +∇ · (ρv) = 0. 2 In material description, it becomes

Dρ
Dt + ρ(∇ · v) = 0. 3 If the material is incompressible, i.e., ρ is
constant, then the equation is reduced to ∇ · v = 0.

of momentum 1 The conservation of angular momentum re-

sults in σ’s being symmetric R3. 2 As for that of linear momen-

tum L5, we have ρ
(

∂2u
∂t2 = ∂v

∂t

)
= f +∇·σ =

∑
i

(
fi+

∑
j

∂σji

∂xj

)
.

of energy The general form of conservation of energy in the

lecture is
DρCpT

Dt = ∇ · k(∇T ) + A + σ : D. , where : is R1 and

the terms from the left to the right are 1 change in temperature
with time 2 heat transfer by conduction (and radiation) 3 heat
production (including latent heat) 4 heat generated by internal
deformation.
Rheology We have rheology · deformation (ϵ) = stress (σ).

Elasticity 1 Elasticity means a material’s deformation un-
der a force will be restored when the force is removed. Under
perfect elasticity, Hook’s law states that the distance of defor-
mation is proportional (linear) to the force applied: σ = C : ϵ
R4. 2 Since it is linear, elasticity of a material is quantified by

the elastic modulus, defined as δ := stress
strain . 3 Young’s modulus

E := σ11

ϵ11
c, and Poisson’s ratio ν := − ϵ33

ϵ11
. 4 In homogeneous

and isotropic materials, Lamé’s constants λ, µ define Hooke’s law
in 3D σ = 2µϵ + λ tr(ϵ)I3×3. 5 With the Bulk (K) and shear
(G) modulus: −p = Kθ (isotropic) σ′

ij = σkk

3 = Kϵkk = 2Gϵ′ij
(deviatoric), where σij + pδij =: σ′

ij . Thus, K = λ+ 2µ/3, where

the second RHS term is compressional and the third is shear. 6
In Newtonian, general compressible fluids, σ = (−p+ζ∆)I+2ηD,
where D is the strain rate, ∆ = Dkk = ∇·v. We have the Navier-
Stokes equation∇p+(ζ+η)∇∆+η∇2v+f = ρDv

Dt = ρ(∂v∂t +v·∇v)
If the fluid is incompressible, then ∆ = ∇ · v = 0 and it’s simpli-
fied to σ = −pI + 2ηD, and we have the Navier-Stokes equation
−∇p+ η∇2v + f = ρ(∂v∂t + v · ∇v).
Wave equation Substituting Lamé’s constants formula into

the equation of conservation of linear momentum R5, we have

ρ∂2u
∂t2 = f + (λ+ 2µ)∇(∇ · u)− µ∇×∇× u.

Interpolation Let (xi, yi)
N
i=0 be N + 1 data points. It can

be shown that, provided ∀i, j, xi ̸= xj , {(xn
i )

N
n=0}Ni=0 is linearly

independent. Thus, the linear system Xa = y, where X has
these vectors as rows and y = (yi)

N
i=0, has a unique solution, a =

(an)
N
n=0 which is the coefficient vector of the unique polynomial

of degree N passing through them.

Lagrange Let PN be the set of all polynomials of degree N or

less. It is a (N + 1)-dimensional vector space. Lagrange found
a basis {ℓi(x)}Ni=0, where ℓi(x) :=

∏
m̸=i

x−xm

xi−xm
, and showed that

L(x) :=
∑N

i=0 yiℓi(x) is the unique interpolating polynomial.
Remainder Lagrange proved that, for any f ∈ CN+1[a, b],

and datapoints (xi, yi)
N
i=0 that f passes through, the unique in-

terpolation polynomial PN (x) results in a remainder, R(x) :=
f(x) − PN (x), satisfying ∀x ∈ [a, b], ∃c ∈ [a, b], R(x) =

Ψ(x)fN+1(c)/(N + 1)!, where Ψ(x) :=
∏N

i=0(x − xi). NOTE
Thus, Ψ(x)max(fN+1(c))/(N + 1)! is an upper bound of it.

Variants Observe that Ψ(x) is much larger around a or b for
evenly spaced datapoints. This, plus potentially large fN+1(c),
gives very unstable results near the boundary. 1 Usually the
choice of xi is the only thing we can control. Lanczos found that
maxxi∈[−1,1] Ψ(x) attains the minimum when xi are the roots of

the Chebyshev polynomial TN+1(x), xi = cos
(
2i−1
2N π

)
. 2 We may

also interpolate f piecewise to decrease the error, although it will
make the interpolation function lose some smoothness.

Quadrature 1 Midpoint IM :=
∑n−1

i=0 f
(

xi+1+xi

2

)
(xi+1−

xi). 2 Trapezoidal
∑n−1

i=0

(
f(xi+1)+f(xi)

2

)
(xi+1 − xi). 3 Simp-

son’s IS := 2
3IM + 1

3IT =
∑

i
(xi+1−xi)

6 (f(xi) + 4f(m) + f(xi+1)).

4 Weddle’s IW = IS2
+

(IS2
−IS)
15 , where IS2

is Simpson’s ap-

plied on double amount of intervals. 5 Composite trapezoidal
∆x
2 [f(x0)+2f(x1)+ · · ·+2f(xn−1)+f(xn)]. 6 Composite Simp-

son’s ∆x
3

[
f (x0) + 2

∑n/2−1
i=1 f (x2i) + 4

∑n/2
i=1 f (x2i−1) + f (xn)

]
.

NOTE Composite Simpson actually uses 2 intervals as one, and
the middle point is thus some xi.

Error All these rules can be regarded as doing piecewise poly-
nomial interpolation on f on evenly spaced datapoints, inte-
grating f minus the polynomial, summing over the intervals,
and using the Lagrange remainder to find the error. We may
find 1 Trapezoidal: − 1

12∆x2(b − a) 1n
∑n−1

i=0 f ′′ (cxi
) 2 Mid-

point: 1
24∆x2(b − a) 1n

∑n−1
i=0 f ′′ (cxi

). 3 Simpson’s: since the
error I − IT ≈ −2(I − IM ), we imagine there’s a better approxi-
mation IS such that IS−IT = −2(I−IM ), giving IS = 2

3IM+ 1
3IT .

We have error −∆x4

180 (b − a)f (4) (cx). 4 Weddle’s: it would be a
fuss to derive the exact one but it should be proportional to ∆x6.

ODE To approximately solve (satisfying convergence as
∆t → 0 and correct qualitative behaviour) y′(t) = f(t, y(t)),
we have 1 By the definition of derivative or the Taylor se-
ries, we have yn+1 ≈ yn + ∆ty′(tn). This the the forward Eu-
ler. 2 By the definition of derivative, we may also say yn+1 ≈
yn + ∆ty′(tn+1), which is the backward Euler. 3 We may also
say y′(tn) ≈ yn+1−yn−1

2∆t and as such yn+1 ≈ yn−1 + 2∆ty′(tn),

which is leapfrog. 4 Recall the trapezoidal rule before, we may
use it here to average the forward and backward Euler to obtain

yn+1 ≈ yn +∆ty
′(tn)+y′(tn+1)

2 .

Error 1 The local error (LE) is error committed at one step,
assuming the previous step yn is exact. Thus it is yn+1 − y′n+1.
2 For example, using Taylor series, forward Euler has local er-

ror (∆t2

2! y
′′
n + . . . ). 3 The (local) truncation error (LTE), τ , is

defined by the local error scaled down: τ := LE/(∆t). 4 A
method is consistent if lim∆t→0 τ = 0. 5 The global error is
E := maxt0 ≤ tn ≤T ∥yn − y(tn)∥, only assuming the inital y0 is
exact. 6 A method converges iff lim∆t→0 E = 0.

Stability Stability in numerical methods of solving ODEs have

different definitions, but in general we would want the numerial
methods to exhibit the same important properties as the exact
solution. We have 1 A numerical method is said to be A-stable,
if, when applied to the reference equation y′ = ky ∧ y(0) = 1 for
k ∈ C, demonstrates that, provided ℜ(k) < 0, limt→∞ solution →
0, the same property from the exact solution y(t) = ekt.

2 A numerical method is L-stable, if it is A-stable, and that
its stability function ϕ(x) → 0 as z → ∞.

Adams-Bashforth For general ODE of form y′(t) = f(y(t), t),
according to the fundamental theorem of calculus, yn+1 − yn =∫ tn+1

tn
f(y(t), t) dt.

The A-B schemes uses combinations of fi for k many i’s with
i ̸= n + 1 to approximate the RHS integral to numerically solve
the ODE. We have these AB schemes: 1 k = 0-step: yn+1 =
yn +∆tfn. 2 k = 1-step: yn+1 = yn + ∆t

2 (fn + fn+1). 3 k = 2-

step: yn+2 = yn+1 +
∆t
12 (−fn + 8fn+1 + 5fn+2). 4 k = 3-step:

yn+3 = yn+2 + ∆t
24 (fn − 5fn+1 + 19fn+2 + 9fn+3). 5 k = 4-

step: yn+4 = yn+3+
∆t
720 (−19fn+106fn+1−264fn+2+646fn+3+

251fn+4)

Runge-Kutta Similar to the trapezoidal method, we have

yn+1−yn ≈ 1
2∆t(y′n+y′n+1). However, here, y′n+1 = f(yn+1, tn+1),

where yn+1 is not known.
In Runge-Kutta 2-step (RK2), we first use forward Euler to get

y∗ ≈ yn+1, then use this to calculate the RHS, and finally gives an
approximation to yn+1 again. Perhaps surprisingly, RK2 is better
in many ways than forward Euler. Specifically, it is L-stable.

But the most common one is RK4, which has yn+1 =
yn + h

6 (k1 + 2k2 + 2k3 + k4), where h is the step size, and

1 k1 = f(tn, yn) 2 k2 = f
(
tn + h

2 , yn + hk1

2

)
3 k3 =

f
(
tn + h

2 , yn + hk2

2

)
4 k4 = f(tn + h, yn + hk3) .


