The Atomic Theory as Applied To Gases, with Some Experiments on the Viscosity of Air

by

Silas W. Holman

Submitted to the Department of Physics and the Department of Mechanical Engineering in partial fulfillment of the requirements for the degrees of

BACHELOR OF SCIENCE IN PHYSICS

and

BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1876

© 1876 Silas W. Holman. This work is licensed under a CC BY-NC-ND 4.0 license.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free license to exercise any and all rights under copyright, including to reproduce, preserve, distribute and publicly display copies of the thesis, or release the thesis under an open-access license.

Authored by:	Silas W. Holman Department of Physics May 18, 1876
Certified by:	Edward C. Pickering Professor of Physics, Thesis Supervisor
Certified by:	Secunda Castor Professor of Mechanical Engineering, Thesis Supervisor
Accepted by:	Qunitus Castor Professor of Wetlands Engineering Undergraduate Officer, Department of Physics
Accepted by:	Tertia Castor Professor of Log Dams Undergraduate Officer, of Mechanical Engineering

The Atomic Theory as Applied To Gases, with Some Experiments on the Viscosity of Air

by

Silas W. Holman

Submitted to the Department of Physics and the Department of Mechanical Engineering on May 18, 1876 in partial fulfillment of the requirements for the degrees of

BACHELOR OF SCIENCE IN PHYSICS

and

BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

ABSTRACT

The developments of the "kinetic theory" of gases made within the last ten years have enabled it to account satisfactorily for many of the laws of gases. The mathematical deductions of Clausius, Maxwell and others, based upon the hypothesis of a gas composed of molecules acting upon each other at impact like perfectly elastic spheres, have furnished expressions for the laws of its elasticity, viscosity, conductivity for heat, diffusive power and other properties. For some of these laws we have experimental data of value in testing the validity of these deductions and assumptions. Next to the elasticity, perhaps the phenomena of the viscosity of gases are best adapted to investigation.¹

Thesis supervisor: Edward C. Pickering Title: Professor of Physics

Thesis supervisor: Secunda Castor Title: Professor of Mechanical Engineering

¹Text from Holman (1876): doi:10.2307/25138434.