
Drawing syntactic proofs in logic with synproof

Paul Isambert
zappathustra@free.fr

http://paulisambert.free.fr

June 9, 2007

0 Introduction

This simple package, based on PSTricks, allows you to draw logical syntactic proofs designed after
the Gamut books1. A pair of commands is enough, but fine tuning can be achieved easily through
optional arguments of the environment.

1 Installation

Declare synproof.sty with usepackage as usual. An option may be loaded, named symbols,
which defines a set of commands for logical operators without math mode:

\Exists ∃
\Forall ∀
\Neg ¬
\And ∧
\Or ∨
\Falsum ⊥
\Implies →

They are optional because, being very common, they might conflict with other packages or your
own command redefinitions.

Since this package is based on PSTricks, you can’t build your file directly to PDF. You have to
build a .ps file and and then convert it to PDF, otherwise the lines will disappear.

2 Commands

\begin{synproof}[〈Optional specifications〉]{〈Length of the derivation〉}
\end{synproof}

This environment works as usual. The optional specifications are explained in the following section.
The length of the derivation is not computed automatically, so you have to specify it. A derivation
of 10 lines is roughly of length 6. Note that you can print a grid that will help you measure the
right length of your derivation by typing \psgrid after \begin{synproof}{n}.

Each new derivation, that is, each new synproof environment sets the line numbers back to 1.
If, for some reason, you want a derivation to start at n, just type \LineNum{n}. You can do that
in the course of a derivation too.

\step[〈Optional line number〉]{〈Expression〉}{〈Rule〉}[〈Optional label〉]
The first mandatory argument is the expression processed at the current step, e.g. p, p∧q,
(∃x(Fx)→∃x(Gx))→∃x(Fx→Gx), and so on. The second mandatory argument takes the rule used
to derive that expression, with reference to the previous line(s) to which that rule applies, like E∧,
13, for instance.

1L.T.F. Gamut, Logic, Language, and Meaning, Chicago, The University of Chicago Press, 2 vol., 1991.

1



The line number is optional and is automatically incremented. Thus, the the first optional
argument may be specified at will. If not, the line number will be handled exactly. Note that if
you enter a wrong line number, the counter won’t follow you and will display the right ones if you
let it take over the following lines. For instance, if you type \step[12]{p}{Assumption} at line 11
and \step{q}{Assumption} at line 12, then both lines will have number 12. If you need automatic
numbering starting where you want to, use \LineNum{} as above.

Finally, the last optional argument is a label that may be used to refer to the current line
in the rest of the derivation. When specifiyng the label, write its name with no backslash (e.g.
\step{p\And q}{Assumption}[foo]), and when you call it, use a backslash followed by the label’s
name like a usual command (e.g. \step{p}{E\And, \foo}). That label gives the number of the
line where it was defined. If the number has been specified with the first optional argument, then
the label will return that number, even if it’s not the ‘real’ one. Note that you must create a
new label every time. This is an obvious shortcoming, so when you’re not completely lost in your
derivation, you may write yourself the number of the line you want to refer to2.

We can already draw a simple derivation. For instance:

1. p∧q Assumption

2. p E∧, 1

4. q E∧, 1

4. Same line number as above 4

\begin{synproof}{2.5}

\step{p\And q}{Assumption}[foo]

\step{p}{E\And, \foo}

\step[4]{q}{E\And, \foo}[fooo]

\step{Same line number as above}{\fooo}

\end{synproof}

\assumption

\assumend

Those two commands delimit the beginning and the end of an assumption. \assumption precedes
the step which is assumed, and \assumend precedes the conclusion. For instance, we can prove
⊢p→(q→p):

1. p Assumption

2. q Assumption

3. p Rep, 1

4. q→p I→

5. p→(q→p) I→

\begin{synproof}{3}

\assumption

\step{p}{Assumption}[p]

\assumption

\step{q}{Assumption}

\step{p}{Rep, \p}

\assumend

\step{q\Implies p}{I\Implies}

\assumend

2Moreover, your label shouldn’t conflict with an existing command. For instance, creating a label named par is

a very bad idea, since \bar already exists. Writing your labels’ names in uppercase is a simple way to avoid this.

2



\step{p\Implies(q\Implies p)}{I\Implies}

\end{synproof}

3 Fine tuning

This section describes how the various dimensions of a derivation may be modified. The optional
specifications of \begin{synproof} take the form of a list of key=value pairs. Default value is 0
for each. Negative values are allowed, and they don’t need to be integers. Here are the parameters:

1 NumToEx sets the distance between the line number and the expression.

2 ExToRule sets the distance between the expression and the rule used to derive it.

3 OutLine sets the position of the outter (vertical) line relative to the line numbers.

4 LineSpace sets the distance between the (vertical) lines of embedded assumptions. You
shouldn’t increase LineSpace without decreasing OutLine (or increasing the latter without de-
creasing the former). Indeed, each embedded line has a position relative to the previous one. So
everything depends upon the ‘depth’ of the assumption.
5 AssumeLine sets the length of the horizontal line which ends an assumption (more exactly, it

sets the position of its ending point).
HorAlign allows you to move the entire derivation to the left or to the right.

1 2

3

4

5

1. p Assumption

2. ¬p Assumption

3. ⊥ E¬, 1, 2

4. ¬¬p I¬

5. p ¬¬, 4

6. p→p I→

Those specifications are local: they work in the current synproof environment, not beyond. If
you want them to work for all subsequent environments, use \SetDim{} with the same key=value

pairs, outside of any synproof environment of course (otherwise it will have a local effect again).
Note that \SetDim is ‘additive’: if you write \SetDim{LineSpace=2}and then later \SetDim{LineSpace=1},
all subsequent derivations will have a space of length 3 between the assumption lines. On the
other hand, if you write \SetDim{LineSpace=2} and then \SetDim{NumToEx=2}, LineSpace will
keep its value 2. This works with the local specifications set with \begin{synproof} too. Thus,
\SetDim{LineSpace=2} and then \begin{synproof}[LineSpace=1]{n} will create a derivation
with 3 units between its assumption lines, although this additional unit won’t affect subsequent
derivations (since it has been added locally). Finally, you can reset all global specifications back to
default with \ResetDim.

4 Example

The next two pages show the derivation of ⊢(∃x(Fx)→∃x(Gx))→∃x(Fx→Gx) and its code.

3



1. ∃x(Fx)→∃(Gx) Assumption

2. ¬∃x(Fx→Gx) Assumption

3. ¬(Fa∧¬Ga) Assumption

4. Fa Assumption

5. ¬Ga Assumption

6. Fa∧¬Ga I∧, 4, 5

7. ⊥ E¬, 3, 6

8. ¬¬Ga I¬

9. Ga ¬¬, 8

10. Fa→Ga I→

11. ∃x(Fx→Gx) I∃, 10

12. ⊥ E⊥, 3, 11

13. ¬¬(Fa∧¬Ga) I¬

14. (Fa∧¬Ga) ¬¬, 13

15. ¬Ga E∧, 14

16. ∀x(¬Gx) I∀, 15

17. Fa E∧, 14

18. ∃x(Fx) I∃, 17

19. ∃x(Gx) E→, 1, 18

20. Ga Assumption

21. ¬Ga E∀, 16

22. ⊥ E¬, 20, 21

23. Ga→⊥ I→

24. ⊥ E∃, 19, 23

25. ¬¬∃x(Fx→Gx) I¬

26. ∃x(Fx→Gx) ¬¬, 25

27. (∃x(Fx)→∃x(Gx))→∃x(Fx→Gx) I→

4



\begin{synproof}[HorAlign=1,OutLine=2,LineSpace=.5]{17}

\assumption

\step{\Exists x(Fx)\Implies\Exists(Gx)}{Assumption}

\assumption

\step{\Neg\Exists x(Fx\Implies Gx)}{Assumption}

\assumption

\step{\Neg(Fa\And\Neg Ga)}{Assumption}

\assumption

\step{Fa}{Assumption}

\assumption

\step{\Neg Ga}{Assumption}

\step{Fa\And\Neg Ga}{I\And, 4, 5}

\step{\Falsum}{E\Neg, 3, 6}

\assumend

\step{\Neg\Neg Ga}{I\Neg}

\step{Ga}{\Neg\Neg, 8}

\assumend

\step{Fa\Implies Ga}{I\Implies}

\step{\Exists x(Fx\Implies Gx)}{I\Exists, 10}

\step{\Falsum}{E\Falsum, 3, 11}

\assumend

\step{\Neg\Neg(Fa\And\Neg Ga)}{I\Neg}

\step{(Fa\And\Neg Ga)}{\Neg\Neg, 13}

\step[15]{\Neg Ga}{E\And, 14}

\step[16]{\Forall x(\Neg Gx)}{I\Forall, 15}

\step[17]{Fa}{E\And, 14}

\step[18]{\Exists x(Fx)}{I\Exists, 17}

\step[19]{\Exists x(Gx)}{E\Implies, 1, 18}

\assumption

\step[20]{Ga}{Assumption}

\step[21]{\Neg Ga}{E\Forall, 16}

\step[22]{\Falsum}{E\Neg, 20, 21}

\assumend

\step[23]{Ga\Implies\Falsum}{I\Implies}

\step[24]{\Falsum}{E\Exists, 19, 23}

\assumend

\step{\Neg\Neg\Exists x(Fx\Implies Gx)}{I\Neg}

\step{\Exists x(Fx\Implies Gx)}{\Neg\Neg, 25}

\assumend

\step{(\Exists x(Fx)\Implies\Exists x(Gx))\Implies\Exists x(Fx\Implies Gx)}{I\Implies}

\end{synproof}

5


