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Using response surface approximations
in fuzzy set based design optimization ?

G. Venter and R.T. Haftka

Abstract The paper focuses on modelling uncertainty typical
of the aircraft industry. The design problem involves maximiz-
ing a safety measure of an isotropic plate for a given weight.
Additionally, the dependence of the weight on the level of un-
certainty, for a specified allowable possibility of failure, is also
studied. It is assumed that the plate will be built from future
materials, with little information available on the uncertainty.
Fuzzy set theory is used to model the uncertainty. Response
surface approximations that are accurate over the entire de-
sign space are used throughout the design process, mainly to
reduce the computational cost associated with designing for
uncertainty. All of the problem parameters are assumed to be
uncertain, and both a yield stress and a buckling load constraint
are considered. The fuzzy set based design is compared to a
traditional deterministic design that uses a factor of safety to
account for the uncertainty. It is shown that, for the example
problem considered, the fuzzy set based design is superior.
Additionally, the use of response surface approximations re-
sults in substantial reductions in computational cost, allowing
the final results to be presented in the form of design charts.

1
Introduction

In the aircraft industry, structures are often designed that will
be built well into the future from materials available then, lead-
ing to uncertainty in material properties.Apart from the uncer-
tain material properties, the manufacturing cost is also uncer-
tain. However, unlike the uncertainty in the material properties,
the designer has some control over the manufacturing cost,
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which is closely linked to the required tolerances in geome-
try. For such design problems, little information regarding the
uncertainty is known, and the uncertainty is typically mod-
eled based on expert opinion and assumptions made by the
designer. Fuzzy set theory can use limited available data and
caters for worst case scenarios. Fuzzy set theory is thus capable
of by compensating for the fact that the uncertainty is mod-
eled based on subjective opinions and assumptions (Maglaras
et al. 1997). In contrast, probabilistic methods require large
amount of data and the results obtained are, in some cases,
very sensitive to both the accuracy of this data as well as to
the assumptions made during the modeling process (e.g. Ben-
Haim and Elishakoff 1990, pp. 11–32).

Fuzzy set theory was introduced by Zadeh (1965) as a
mathematical tool for the quantitative modeling of uncertainty,
and makes use of fuzzy numbers to represent uncertain prob-
lem parameters. The designer only needs to specify the range
of uncertainty and a membership function that denotes the pos-
sibility of occurrence of an element in the specified range to
represent an uncertain parameter as a fuzzy number. Member-
ship functions are generally constructed subjectively, based
on expert opinion. In recent years, fuzzy set theory has been
applied to a wide range of structural optimization problems.
For example, Liu and Huang (1992) performed a fatigue re-
liability analysis of a portal frame, Jung and Pulmano (1996)
considered the optimal plastic design of a fixed-fixed beam and
a portal frame, and Jensen and Sepulveda (1997) minimized
the weight of a 25-bar transmission tower. Fuzzy set theory
has also been used in multidisciplinary optimization by Rao
(1993) to design the main rotor of a helicopter as well as by
Wu andYoung (1996) to optimize the machine room layout of
a ship. Additionally, Shih and Chang (1995) applied multicri-
teria optimization to various truss examples, considering both
weight and displacement as objectives.

Unfortunately, designing for uncertainty is computation-
ally intensive and typically requires at least an order of magni-
tude more computational cost as compared to a corresponding
deterministic design. In the present paper, response surface ap-
proximations are used to reduce the high computational cost
associated with designing for uncertainty by using approxima-
tions that are accurate over the entire design space to replace
costly finite element analyses. Response surface approxima-
tions have attracted a lot of interest from the structural opti-
mization community in recent years, since they filter out nu-
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merical noise inherent to most numerical analysis procedures
(e.g. Giuntaet al. 1994), they provide the designer with a
global perspective of the response over the entire design space
(e.g. Mistreeet al.1994), and they enable easy integration of
various software codes (e.g. Kaufmanet al.1996).

An isotropic plate with a change in thickness across its
width is considered as a design problem. All of the problem
parameters are considered to be uncertain and the objective is
to maximize a safety measure of the plate for a given weight.
Both deterministic and fuzzy set based designs are considered
and the results are compared.The safety measure is maximized
by maximizing the factor of safety in the deterministic design
and by minimizing the possibility of failure in the fuzzy set
based design. Finally, the dependence of the weight on the level
of uncertainty associated with the key geometric parameters
is presented in the form of a design chart, based on results
obtained from a number of optimizations.

2
Fuzzy set theory

Fuzzy set theory presents a methodology for the mathemati-
cal modeling of uncertainty. In contrast to classical set theory
where a sharp transition exists between membership and non-
membership, fuzzy set theory makes use of membership func-
tions to denote the degree to which an element belongs to a
fuzzy set. A membership function assigns a grade of member-
ship, ranging between 0 and 1, to each element of the universal
set as follows

M (x) : X → [0, 1] . (1)

In (1) M denotes a membership function that maps the ele-
ments of the universal setX to the real interval[0, 1]. The
same symbol, a bold face capital letter, is used to denote both
the fuzzy set and its membership function. Since each fuzzy
set is completely and uniquely defined by only one particular
membership function, no ambiguity results from the double
use of the symbol.

Fuzzy sets are represented numerically by making use of
α level cuts. Anα level cut is defined as the real interval where
the membership function is larger than a given value,α (Klir
and Yuan 1995, p. 19) and may be written mathematically for
a generic fuzzy setB as follows:

αB = {x|B(x) ≥ α} . (2)

Figure 1 provides a graphical representation of (2), where it
is assumed thatB has a triangular and symmetric membership
function, and shows the end pointsαb1 andαb2 of theα level
cut.

A fuzzy number is defined as a fuzzy set that is both normal
and convex (Klir and Yuan 1995, pp. 97). A normal fuzzy set
has a maximum membership function equal to 1, while all
possibleα level cuts are convex for a convex fuzzy set. The
fuzzy setB shown in Fig. 1 is thus a fuzzy number. In fact the
triangular and symmetric membership function is most often

Fig. 1. An α level cut of a triangular and symmetric membership
function, having support in(xL, xR)

used to represent fuzzy numbers, mainly due to its simplicity,
and was used throughout the present paper to represent all of
the uncertain problem parameters.

A fuzzy functionY is a function of fuzzy variablesXi and
may be written as

Y = Y(X1, X2, . . . , Xn) (3)

for the case wheren fuzzy variables are considered. Klir and
Yuan (1995, pp. 105–109) summarized and proved the follow-
ing properties of a fuzzy function.

1. When all of the fuzzy variables of a fuzzy function are
continuous fuzzy numbers, the fuzzy function itself is also
a continuous fuzzy number.

2. When all of the fuzzy variables of a fuzzy function are
fuzzy numbers, theα level cut of a fuzzy functionαY may
be written in terms of theα level cuts of its fuzzy variables
αXi as follows:

αY =α Y (αX1, . . . ,α Xn) = (4)[
min
αR

[
Y (αX1, . . . ,α Xn)

]
, max

αR

[
Y (αX1, . . . ,α Xn)

]]
,

whereαR denotes then-dimensional box, formed by the
α level cuts of then fuzzy numbers.

Based on these properties of a fuzzy function, Dong and Shah
(1987) introduced the vertex method for evaluating the upper
and lower bounds ofαY when all of the fuzzy variables of
Y are fuzzy numbers. This method requires the evaluation
of the fuzzy function at the 2n vertices of then-dimensional
rectangle, formed by theα level cuts of then fuzzy variables.
In addition, interior global extreme points need to be checked.
This method requires a large number of function evaluations
and is computationally intensive.

For calculating the possibility of failure it is required to
compare a crisp number with a fuzzy number. Note that a
fuzzy number may also be considered as the trace of a possi-
bility measureΠ on the singletons (single elements)x of the



3

universal setX (Dubois and Prade 1988, p. 13–17). When a
possibility measure defined on the unit interval is considered,
its possibility distributionπ is then interpreted as the mem-
bership function of a fuzzy numberB describing the event that
Π focuses on, as follows:

Π ({x}) = π(x) = B(x) , ∀x ∈ X . (5)

The possibility measure of a crisp number being smaller or
equal to a fuzzy numberB is then defined (Dubois and Prade
1988, pp. 99–101) as follows:

ΠB ([x, +∞)) = sup
y≥x

B(y) , ∀x . (6)

The possibility distribution functionπB corresponding to the
possibility measure of (6) is shown graphically in Fig. 2 for the
general case whereB has a nonlinear membership function.

Fig. 2. Possibility distribution ofB ≥ x for nonlinearB(x), having
support in(xL, xR)

Based on (5) and (6), the possibility distribution of failure
π(P−Pf ) is obtained from the fuzzy function(P − Pf ) that
contains the fuzzy numbersP (the applied load) andPf (the
failure load) as variables. The possibility of failure(P−Pf ≥
0) is then defined as

Π(P−Pf ) ([0, +∞)) = sup
y≥0

(P − Pf )(y) . (7)

3
Overview of response surface approximations

A response surface approximation is an approximate relation-
ship between a dependent variableη (the response) and a vector
x of k independent variables (the predictor variables). The re-
sponse is generally obtained from experiments (which may be
numerical in nature), whereη denotes the mean or expected re-
sponse value. It is assumed that the true model of the response
may be written as a linear combination of given functionsz̃
with some unknown coefficients̃β. The experimentally ob-
tained responsey differs from the expected valueη due to
random experimental errorδ as follows:

y(x) = η(x) + δ = z̃(x)T β̃ + δ . (8)

Since the exact dependence ofη is generally unknown, a
response surface approximation is used to approximateη(x)

as follows:

y(x) = z(x)T β + ε , (9)

wherez(x) contains the assumed functions in the response sur-
face approximation andβ the associated coefficients. Further-
more,ε denotes the total error, which is the difference between
the predicted and measured response values and includes both
random (variance) and modeling (bias) error. Typically low or-
der polynomials are used as a response surface approximation,
in which casez(x) consists of monomials.

The coefficientsβ of the response surface approximation
are estimated from the experimentally obtained response val-
ues to minimize the sum of the squares of the error terms,
a process known as regression. The estimated values ofβ is
denoted byb, resulting in the following response surface ap-
proximation:

ŷ(x) = z(x)T b , (10)

where the caret symbol implies predicted values.
The assumed form of the response surface approximation,

(10), usually includes redundant parameters and parameters
that are poorly characterized by the experiments. These pa-
rameters may increase the prediction error of the approxima-
tion and thus decrease its predictive capabilities. In the present
paper, redundant parameters are eliminated by using mixed,
backwards, stepwise regression (e.g. Ott 1993, pp. 648–659;
Myers and Montgomery 1995, pp. 642–655). Mallow’sCp

statistic is used to identify the best reduced response surface
approximation from the subset of reduced response surface ap-
proximations provided by the stepwise regression procedure
and is defined as

Cp = SSEp

s2
ε

− (n − 2p) , (11)

whereSSEp is the sum of the squares of then error terms (one
for each data point used to estimateb) for an approximation
with p parameters ands2

ε is the mean sum of squares of the
error terms obtained from the response surface approximation
with all of the parameters included.

Optimization has the general tendency of exploiting weak-
nesses in the formulation of the response function, and highly
accurate response surface approximations are thus a require-
ment in structural optimization applications. To ensure highly
accurate approximations, it is important to evaluate the pre-
dictive capabilities of the approximations. In the present pa-
per, the coefficient of determination(R2) statistic, the ad-
justedR2 (Adj-R2) statistic, the percent root mean square
error (%RMSE) as well as the percent root mean square er-
ror based on the predicted sum of squares (PRESS) statistic
(%RMSEPRESS) are calculated (Myers and Montgomery 1995,
pp. 28–47).

TheR2 statistic denotes the proportion of the variability
in the response that is accounted for by the response surface
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approximation and has a value between 0 and 1. The Adj-R2

statistic is an alternative measure of the explained variability
that, unlikeR2, has the desirable property that its value does
not necessarily increase when adding (possibly redundant) pa-
rameters to a response surface approximation. The %RMSE
is an estimate of the root mean square error of the approxima-
tion that is obtained from the data points used to construct the
approximation, using the following unbiased estimator:

%RMSE= 100

y
=

√√√√ 1

(n − p)

n∑
i=1

(yi − ŷi )2 ,

where

y = 1

n

n∑
i=1

|yi | . (12)

The %RMSEPRESSis an additional measure of the error,
based on the PRESS statistic. The PRESS statistic is calcu-
lated by selecting a data point, say data pointi. The response
surface approximation obtained from the remaining(n − 1)

data points is used to predict the response at the withheld data
point, denoted bŷy(i). The prediction error at the withheld data
point e(i) is then defined as

e(i) = yi − ŷ(i) , (13)

and is referred to as thei-th PRESS residual. This procedure
is repeated for all of the data points and the resulting PRESS
residuals are summed to form the PRESS statistic as follows:

PRESS=
n∑

i=1

e2
(i) =

n∑
i=1

[
yi − ŷ(i)

]2
. (14)

The

%RMSEPRESS= 100

y

√
1

n
PRESS. (15)

4
Plate example

An isotropic plate with a change in thickness in the form of a
linear ramp (see Fig. 3) is the design problem considered in
the present paper.

Three nondimensional parameters,λ, β andγ , are used to
specify the geometry and location of the change in thickness
(see Fig. 4).The plate is simply supported on two edges, free on
the other two edges, and subjected to an uniformly distributed
load applied on the two simply supported edges.

Both a yield stress failure (according to the Von Mises
criterion) and a buckling load constraint are considered in the
design, and the failure loadPf of the plate is calculated from

Pf = min




σY λbt0

σ̃x

Ñcritπ
2Eb(λt0)

3

12(1 − ν2)a2

, (16)

Fig. 3.Three-dimensional view of the plate with a thickness change.

Fig. 4.Cross-section of plate with response variables shown.

and failure is defined to occur when:

P − Pf ≥ 0 . (17)

In (16) and (17),σy denotes the yield stress,E the Young’s
modulus andν the Poisson’s ratio of the material considered,
while λ, a, b, t0 andr describe the geometry of the plate as
shown in Figs. 3 and 4 andP denotes the applied load. Addi-
tionally, σ̃x denotes the nondimensional,x-directional stress
component on the top surface of the thin section of the plate,
calculated a distancer from the re-entrant corner, and is de-
fined as

σ̃x = λbt0σx

P
, (18)

while Ñcrit denotes the nondimensional buckling load of the
plate, defined as

Ñcrit = 12(1 − ν2)a2Ncrit

π2Eb(λt0)3 . (19)

Venteret al. (1997) used a large number of numerical ex-
periments to study this problem in detail, and showed that the
maximum von Mises stress always occurs on the top surface
of the thin section of the plate, in which caseσx is the only
nonzero stress component. According to the von Mises crite-
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rion, failure then occurs when

σ̃x ≥ σ̃Y = λbt0σY

P
. (20)

Venteret al.(1997) also determined that the problem has both
a local and a global buckling mode, and defined a simple geo-
metric criterion to distinguish between the two buckling modes
as follows:

buckling mode=
{

local if (0.5−β−γ )
λ

≥ 0.6

global if (0.5−β−γ )
λ

≤ 0.6
. (21)

Venteret al. (1997) constructed highly accurate response
surface approximations for both thex-directional stress distri-
bution on the top surface of the thin section of the plate and for
the buckling load of the plate, using a total of 752 finite element
analyses. Numerical experiments in the form of finite element
analyses were conducted using MSC\NASTRAN Version 68.
A cross-section of the plate was used to model the stress distri-
bution near the re-entrant corner, using four-node, isoparamet-
ric, plane strain elements. All of these models had a uniform
mesh, with roughly 1,800 elements in thex-direction and 9
elements in thez-direction, but the number of elements varied
slightly from model to model. A schematic representation of
the finite element model used is shown in Fig. 5.

Fig. 5. Finite element model used for stress distribution about the
re-entrant corner

For the buckling load response surface approximations,
four-node, isoparametric, plate bending elements were used
to construct a two-dimensional finite element model similar
to a plan view of Fig. 3. Twenty elements were used in each
of thex- andy-directions respectively. The eccentricity of the
mid-plane was found to have an insignificant impact on the
buckling load value (note that the sides of the plate are free)
and was ignored in the analysis.

The stress distribution response surface approximation (see
Venteret al.1997) may be written in functional form as

σ̃x = σ̃x

(
λ, β, γ, r̃ζ−1

)
, (22)

whereζ is a constant that describes the radial stress distribution
near the re-entrant corner and depends onλ,γ anda/t0 through

the angleΘ. Additionally, r̃ is the nondimensional distance
measured from the re-entrant corner, defined as:

r̃ = r/t0 . (23)

Additionally, two response surface approximations, correspond-
ing to the local and global buckling modes were constructed,
which may be written in functional form as:

Ñloc = Ñloc(λ, β, γ ) , Ñglob = Ñglob(λ, β, γ ) . (24)

The design space used for constructing the stress distri-
bution and buckling load response surface approximations is
summarized in Table 1. The upper limit onr̃ limits the radius of
the yield zone about the re-entrant corner to be no greater than
80% of the thickness of the thin section of the plate, while the
upper bound onγ is dictated by the geometry of the transition
region.

Table 1.Design space for constructing the re-
sponse surface approximation approximations

Response variable Range

λ 0.2 ≤ α ≤ 1.0
β −0.475≤ β ≤ 0.475
γ 0 ≤ γ ≤ 0.475− β

r̃ζ−1 0 ≤ r̃ ≤ 0.8α

The stress distribution response surface approximation was
constructed from 288 plate configurations (corresponding to
288 finite element analyses). Each plate configuration included
a number of data points with differentr̃ ζ−1 values (correspond-
ing to different finite elements), yielding a total of 2,124 data
points. The buckling load response surface approximations
were constructed from an additional 288 finite element anal-
yses. Using the geometric criterion of (21), these 288 finite
element analyses were divided into two groups corresponding
to the two buckling modes. This process identified 126 data
points for constructing the local buckling load approximation
and 162 data points for constructing the global buckling load
approximation. A quartic polynomial was used as initial re-
sponse surface approximation for both the stress distribution
and the global buckling load response surface approximations,
while a cubic polynomial was used for the local buckling load
response surface approximation. These initial response sur-
face approximations were reduced, using the mixed stepwise
regression procedure and theCp statistic. The process of con-
structing the response surface approximations is discussed in
more detail by Venteret al.(1997). The predictive capabilities
of the reduced response surface approximations are summa-
rized in Table 2.

5
Design problem formulation

The design problem has two objectives. The first objective is
to maximize a safety measure of the plate for a given weight.
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Table 2. Predictive capabilities of stress distribu-
tion and buckling load response surface approxi-
mations

Model R2 Adj-R2 RMSE PRESS
[%] [%]

Stress 4-th order model (2,124 data points)

Reduced
43 terms 0.9983 0.9982 3.2964 3.3886
Local
buckling 3-rd order model (126 data points)

Reduced
19 terms 0.9999 0.9998 0.5550 0.6920
Global
buckling 4-th order model (162 data points)

Reduced
25 terms 0.9910 0.9895 2.4888 3.0202

The results obtained from a traditional deterministic approach,
using a factor of safety to account for the uncertainty, were
compared to those obtained from a fuzzy set based approach.
The safety measure of the plate was maximized, by maximiz-
ing the factor of safety for the deterministic approach and by
minimizing the possibility of failure for the fuzzy set based
approach. Note that there exist fundamental differences be-
tween the deterministic and fuzzy set based approaches for
maximizing the safety measure of the plate for a given weight.
The deterministic approach tends to equalize the failure load
of each failure criterion, while the fuzzy set based design tends
to equalize the possibility of failure of each failure criterion.

The second objective is to study the dependence of the
weight of the final design on the level of uncertainty associ-
ated with the design variablesλ, β andγ . In this case, the
weight was minimized for a specified allowable possibility of
failure and different levels of uncertainty associated with the
design variables. The results are presented in the form of a de-
sign chart. Different levels of uncertainty for the design vari-
ables were considered, since these geometric variables have
the largest influence on the manufacturing cost of the plate. If
the tolerances of these variables can be relaxed without a large
penalty in terms of weight, substantial cost savings can be
achieved in manufacturing the plate. The problem parameters
and associated levels of uncertainty used are summarized in
Table 5. Although Table 5 has a total of 11 uncertain problem
parameters, only 8 uncertain parameters are associated with
each of the two failure criteria [see (16), (22) and (24)].

5.1
Deterministic design

The objective of the deterministic design is to maximize the
factor of safety for a given weight. However, since it is difficult
to specify a meaningful weight, it was decided to minimize
the weight for a given factor of safety. The resulting minimum
weight was then used as the given weight for the fuzzy set
based design. A factor of safety of 1.5 was assumed and the

Table 3.Problem parameters and associated
uncertainty

Variable
Nominal
values

Level of
uncertainty,u

λ† [0.2 – 1.0] [± 2 –± 20]%
β† [-0.4 – 0.4] [± 2 –± 20]%
γ † [0 – 0.8] [± 2 –± 20]%
a 228.6 cm ±5%
b 127.0 cm ±5%
t0 7.620 cm ±5%
E 206.84 GPa ±5%
ν 0.29 ±5%
σy 197.26 MPa ±10%
r 5αt0 ±10%
P 3,224.96 kN ±10%

† Design variables

level of uncertainty associated with the design variables was
considered to be constant, equal to±5%. The nondimensional
cross-sectional area of the plateÃ was used as a representative
value of the weight and the resulting optimization problem may
be written as

minimize:

Ã = A

λt0
= 1

2
(1 + 2β + γ ) + λ

2
(1 − 2β − γ ) ,

subject to

β

0.4
+ 1 ≥ 0 , 1 − β

0.4
≥ 0 , γ ≥ 0 ,

1 − γ + β

0.4
≥ 0 ,

Pf

P
− 1.5 ≥ 0 . (25)

The constraints involvingβ andγ are geometric constraints
andPf is calculated from (16), using the nominal values of
the design variables.

5.2
Fuzzy set based design

The fuzzy set based design problem minimizes the possibility
of failure, using the optimum nondimensional cross-sectional
area obtained from (25) as an upper limit of the weight. The
resulting optimization problem may be written as

Minimize:

Π(P−Pf ) = Π(P−Pf )(λ, β, γ ) ,

subject to

β

0.4
+ 1 ≥ 0 , 1 − β

0.4
≥ 0 , γ ≥ 0 ,

1 − γ + β

0.4
≥ 0 ,

Ã(λ, β, γ )

Ã∗ − 1 = 0 . (26)
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where bold face Greek symbols denote fuzzy numbers while
regular font symbols denote nominal values. Additionally,
Π(P−Pf ) denotes the possibility of failure and̃A∗ denotes the
optimum nondimensional cross-sectional area obtained from
the deterministic design of (25).

5.3
Implementation of the fuzzy set based design

In the present work response approximations form an inte-
gral part of the fuzzy set based design and two levels of re-
sponse surface approximations are employed during the dif-
ferent stages of the design process. On the first level, the stress
distribution and buckling load response surface approxima-
tions (Section 4) are used to replace computationally expensive
finite element analysis in evaluating the possibility of failure.
The possibility of failure is calculated from (16), using the ver-
tex method. When considering all of the problem parameters
as uncertain, the evaluation of the possibility of failure for a
singleα level cut value requires 2×28 = 512 (recall that each
failure criterion has a total of 8 uncertain problem parameters)
finite element analyses when no response surface approxima-
tions are used. In terms of a single optimization, an estimate of
the required number of finite element analyses required when
not using response surface approximations, is obtained from
the product of four numbers as follows:

Average number of design
optimization iterations: 5

Average number ofΠ(P−Pf )

evaluations per iteration: 6

Average number ofα level cut
evaluations perΠ(P−Pf ) evaluation: 5

Number of finite element analyses
perα level cut evaluation ofΠ(P−Pf ): 512

Total number of finite element analyses
required per optimization: 76,800

In contrast, the stress distribution and buckling load re-
sponse surface approximations were constructed from a total
of only 752 finite element analyses. Additionally, these re-
sponse surface approximations can be used in multiple op-
timizations without the need of performing additional finite
element analyses.

On the second level, a response surface approximation of
the possibility of failure as a function of the nominal values
of the design variables and the level of uncertainty associated
with these variables was constructed. This second level ap-
proximation was constructed to simplify the integration of the
analysis code with the optimization algorithm as well as to
eliminate noise in the response function, thus allowing the use
of a derivative based optimization algorithm. In the present pa-
per, the generalized reduced gradient algorithm provided with
Microsoft Excel Version 7.0 was used.

The λ, β and γ design space of Table 1 was used to
construct the possibility of failure response surface approx-
imation, with numerical experiments conducted at an evenly
spaced grid consisting of 11 data points in each of theλ, β and
γ directions. Additionally, seven levels of uncertainty evenly
spaced between±2% and±20% were considered, yielding a
total of 2,629 data points in the design space.At each data point
the possibility of failure according to each of the two failure
criteria was evaluated. Two response surface approximations
(one for each failure mode) were constructed using all of the
data points with possibility of failure not equal to either 0 or
1. This process resulted in 499 data points for constructing the
yield stress failure criterion response surface approximation
and 573 data points for the buckling load constraint failure
criterion response surface approximation. The resulting pre-
dicted possibility of failure is then obtained from

Π̂(P−Pf ) = min
(
Π̂YieldStress, Π̂Buckling

)
. (27)

It was found that a general fourth-order polynomial (70 pa-
rameters) gave accurate approximations for both failure modes.
These general response surface approximations were reduced
using the mixed stepwise regression procedure and theCp

statistic, with the predictive capabilities of the response sur-
face approximations summarized in Table 4.

Table 4.Predictive capabilities of the possibility of fail-
ure response surface approximations

Model R2 Adj-R2 RMSE
[%]

PRESS
[%]

Stress 4-th order model (499 data points)

Full
70 terms 0.9988 0.9986 2.2525 2.6205
Reduced
59 terms 0.9988 0.9986 2.2371 2.5205
Buckling 4-th order model (573 data points)

Full
70 terms 0.9982 0.9980 2.7342 3.0991
Reduced
57 terms 0.9982 0.9980 2.7118 3.0211

6
Dependence of the weight on the level of
uncertainty

In order to study the dependence of the weight of the plate
on the level of uncertainty associated with the design vari-
ables, different levels of uncertainty between±2% and±20%
were considered. For each of these levels, the nondimensional
cross-sectional area of the plate was minimized for an allow-
able possibility of failure. The allowable possibility of failure
(allowable was assumed to be equal to the optimum value ob-
tained from the fuzzy set based design problem of (26). The
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resulting optimization problem may be written as

minimize:

Ã = A

λt0
= 1

2
(1 + 2β + γ ) + λ

2
(1 − 2β − γ ) ,

subject to

β

0.4
+ 1 ≥ 0 , 1 − β

0.4
≥ 0 , γ ≥ 0 ,

1 − γ + β

0.4
≥ 0 ,

Π̂(P−Pf )(λ, β, γ, u)

Πallowable
− 1 ≥ 0 , (28)

whereu denotes the level of uncertainty associated with the
design variables and̂Π(P−Pf ) denotes the predicted possibility
of failure, obtained from (27).

7
Results

In order to obtain an upper limit of the weight for the fuzzy
set based design, the deterministic design was evaluated first.
The nondimensional cross-sectional area of the plate was min-
imized for a factor of safety equal to 1.5, making use of the
formulation of (25). The corresponding optimum design is
summarized in Table 5, where the values in parentheses are the
possibility of failure values obtained from the reduced possi-
bility of failure response surface approximations.

Table 5. Deterministic opti-
mum (uncertainty of the de-
sign variables equal to±5%)

Variable Value

λ 0.6287
β -0.4000
γ 0.0447
Ã∗ 0.6741
Factor of safety 1.5

ΠYieldstress
0.0977

(0.1181)

ΠBuckling
0.3411

(0.3331)

For the deterministic optimum design, both failure criteria
are active. The optimum design corresponds to a plate with a
change in thickness that starts at the minimum allowable dis-
tance from the left endpoint of the plate (see Fig. 4) with a very
short transition zone (smallγ value). Even though both failure
criteria are active for the optimum design, a large difference
exists between the possibility of failure for the two failure cri-
teria, with the buckling load constraint being critical. Both the
possibility of failure values obtained from the vertex method
and the values obtained from the reduced possibility of failure
response surface approximation are shown. The accuracy of

the reduced possibility of failure response surface approxima-
tion is demonstrated since the difference between the critical
predicted and calculated possibility of failure values at the
optimum design is only 2.3%.

The equivalent fuzzy set based design, using theÃ∗ value
of Table 5 as an upper limit of the weight are summarized
in Table 6. Again, the values in parentheses are the possibil-
ity of failure values obtained from the reduced possibility of
failure response surface approximations. The fuzzy set based
optimum design corresponds to a plate where the change in
thickness starts at the minimum allowable distance from the
left endpoint of the plate with no transition zone (γ value
equal to 0). The fuzzy set based design eliminates the weight
of the ramp and uses it to thicken the thin section of the plate.
The result is an increase in the stress concentration and an
improvement in the buckling load of the plate. The fuzzy set
based design thus attempts to equalize the possibility of fail-
ure of the two failure criteria by making the yield stress failure
criterion more critical and the buckling load constraint less
critical. However, for the present example problem, the de-
sign variable limits kept the possibility of failure values from
becoming equal at the optimum design.

Table 6. Fuzzy optimum (un-
certainty of the design vari-
ables equal to±5%)

Variable Value

λ 0.6379
β -0.4000
γ 0.0000
Ã∗ 0.6741
Factor of safety 1.4898

ΠYieldstress
0.1319

(0.1262)

ΠBuckling
0.2788

(0.2721)

For the fuzzy set based design, the factor of safety is not
much different from that of the deterministic design (only 0.7%
lower), however, there is a large difference in the possibility
of failure between the two designs. The possibility of failure
for the fuzzy set based design is 22.3% lower than that of
the deterministic design. As before, both the predicted and
calculated possibility of failure values are shown in Table 6,
with the difference between the critical values equal to only
2.4%.

The possibility distributions of failure for each failure mode
of the optimum designs obtained from the two methods are
shown graphically in Fig. 6. The possibility distributions of
Fig. 6 clearly illustrate the differences in the way each method
maximizes the safety measure for a given weight as discussed
in Section 5.

An important tool for determining the tolerances to which
a structure will be manufactured, is to know the dependence
of the weight on the uncertainty associated with the geom-
etry of the structure. The dependence of the weight of the
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Fig. 6. Possibility distributions of failure for the deterministic and
fuzzy set based optimum designs

structure on the level of uncertainty associated with the design
variables was thus also studied. For this study, the possibility
of failure was kept constant at the optimum value obtained
from the fuzzy set based design (i.e., 0.2788 as summarized
in Table 6), while the level of uncertainty associated with the
design variablesλ, β and γ was varied between±2% and
±20%. Seven levels of uncertainty, evenly distributed between
±2% and±20%, were considered. For each of these levels,
the reduced possibility of failure response surface approxima-
tions and the Microsoft Excel solver was used to minimize the
nondimensional cross-sectional area for the specified possibil-
ity of failure.As expected, the nondimensional cross-sectional
area of the plate increased with an increase in the level of un-
certainty and the results are shown graphically in Fig. 7.

Fig. 7.Nondimensional cross-sectional area associated with different
level of uncertainty in the design variables

Figure 7 indicates that the increase in weight is almost lin-
early proportional to the increase in the uncertainty associated
with the design variables. The nondimensional cross-sectional
area increased by 10.7% with an 18% increase in the uncer-
tainty associated with the design variables. Using Fig. 7 and
the dependence of the manufacturing cost on the tolerance of
λ, β andγ , the designer may determine what tolerance to use
in manufacturing the plate.

8
Concluding remarks

It is shown that response surface approximations provide an
effective approach for reducing the computational cost associ-
ated with performing a fuzzy set based design for uncertainty.
The large number of computationally expensive finite element
analyses required to perform the fuzzy set based design is re-
placed by response surface approximations that are inexpen-
sive to evaluate. By using response surface approximations, the
computational burden shifts from the optimization problem to
the problem of constructing the response surface approxima-
tions. Due to the iterative nature of the design process, the
fact that response surface approximations allow multiple op-
timizations at minimal cost should be an attractive feature to
any designer. The present paper also made use of response sur-
face approximations to simplify the integration of the analysis
code and the optimization algorithm.

It was shown that for the same upper limit of the weight,
the fuzzy set based design resulted in an optimum design with
a possibility of failure 22.3% lower than the corresponding
deterministic design. Additionally, the factor of safety of the
fuzzy set based design is only 0.7% smaller than that of the de-
terministic design and for this example problem the fuzzy set
based design is thus clearly superior. Finally, the dependence
of the structural weight on the uncertainty of some key geo-
metric parameters is presented in the form of a design chart
and may be used, together with the manufacturing cost, to
determine the tolerances that when manufacturing the plate.
This design chart would have been very time consuming to
construct if response surface approximations were not used to
reduce the computational cost.
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