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Abstract. We indicate a complete set of elementary invariants for the ring of Witt vectors
over a perfect field of prime characteristic, where this ring is equipped with its unique
multiplicative set of representatives for the residue field.

Theorems ofAx, Kochen and Ersov tell us that the elementary theory of a henselian
valuation ring of equal characteristic 0 is completely determined by the elementary
theories of its value group and residue field, see [A73,Ko75,KuPr89], and the ref-
erences therein. This elementary classification goes through even when a predicate
is added for a field of representatives of the residue field.

Here we provide a mixed characteristic analogue of the latter when the residue
field is perfect of characteristicp and the maximal ideal is generated byp. For
a complete discrete valuation ring with these properties the analogue of ‘field of
representatives’ is ‘multiplicative set of representatives for the residue field’ and is
due to Witt. For proofs of this and related results mentioned below that we shall
use we refer to Serre [S62, Ch. II]. We now proceed to precise statements.

Fix a prime numberp. LetA be a complete discrete valuation ring with maximal
idealm = pA and perfect residue fieldk = A/m (of characteristicp). Letπ : A →
k be the residue class map. There is a unique multiplicatively closed setS ⊆ A that
is mapped bijectively ontok by π . (Among the elements ofS are 0, 1 and−1.)
Each elementa ∈ A can be written uniquely asa = ∑∞

i=0 sip
i with coefficients

si ∈ S. By [Ko75, p. 413] one can axiomatize Th(A) in terms of Th(k). We extend
this to an axiomatization of Th(A, S) in the theorem below. In its proof we shall
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use the functorW that assigns tok the corresponding ringW(k) of “Witt vectors”
overk. The ringsW(k) andA are isomorphic.

As in [S62, p. 44], letf : k → A denote the system of multiplicative repre-
sentatives, that is,π(f (x)) = x andf (xy) = f (x)f (y) for x, y ∈ k, and thus
f (k) = S. The following easy result onZ-linear relations among elements ofS is
decisive.

Let k = (k1, . . . , kn) be ann-tuple of integers, and letX = (X1, . . . , Xn) be an
n-tuple of distinct indeterminates. Given ann-tupleb = (b1, . . . , bn) of elements
in an abelian (additive) groupB, putk · b := k1b1 + · · · + knbn.

Lemma 1. There are polynomialsR1, . . . , RN ∈ Fp[X], depending only onp and
k and not onA, such that for allx = (x1, . . . , xn) ∈ kn:

k · f (x) = 0 ⇐⇒ R1(x) = · · · = RN(x) = 0,

wheref (x) := (f (x1), . . . , f (xn).

Proof. By [S62, Prop. 9, p. 47] we have forx ∈ kn:

k · f (x) =
∞∑
i=0

f
(
Pi(x

p−i

)
)
pi

wherePi ∈ Fp[X] depends only oni, p andk. The ideal ofFp[X] generated by the
polynomialsPi , i ∈ N, is generated by finitely many among them, sayR1, . . . , RN .
ThenR1, . . . , RN have the property described in the lemma. ut

TheZ-linear relations together with the multiplicative relationss = s1s2 among
the elements ofS generate all polynomial relations overZ among elements ofS:

Lemma 2. Let U and V be multiplicatively closed subsets of fieldsE and F of
characteristic0. Letλ : U → V be a bijection such thatλ(u1u2) = λ(u1)λ(u2)

for all u1, u2 ∈ U , and such that for allk ∈ Zn and all u ∈ Un we have:
k · u = 0 ⇐⇒ k · λ(u) = 0. Thenλ extends to an isomorphism from the subfield
Q(U) of E onto the subfieldQ(V ) of F .

Proof. Let P = ∑
i ciX

i ∈ Z[X] where the sum is over finitely manyi ∈ Nn.
Then, givenu ∈ Un, we haveP(u) = ∑

i ciu
i = 0 if and only if

∑
i ciλ(ui) =∑

i ciλ(u)i = P(λ(u)) = 0, by the hypothesis of the lemma. The conclusion of
the lemma follows easily. ut

For eachk ∈ Zn we fix a tupleR = (R1, . . . , RN) ∈ Fp[X]N with the property
of Lemma 1. LetT be the theory in the language{0, 1, +, −, ·, S} (the language
of rings with an extra unary predicateS) whose models are the structures(B, 6)

such that

(1) B is a valuation ring with fraction fieldE of characteristic 0.
(2) 6 is a multiplicatively closed subset ofB that is mapped bijectively onto

B/m(B) by the residue class mapb 7→ b : B → B/m(B).
(3) m(B) = pB andB/m(B) is a perfect field.
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(4) The local ringB is henselian.
(5) For eachk ∈ Zn we have:k · σ = 0 ⇐⇒ R(σ) = 0, for all σ ∈ 6n, where

R ∈ Fp[X]N is the tuple associated tok, andσ := (σ 1, . . . , σ n).

Theorem. Two models(B, 6) and(B ′, 6′) ofT are elementarily equivalent if and
only if their residue fieldsB/m(B) andB ′/m(B ′) are elementarily equivalent, and
their value groups0 and0′ are elementarily equivalent.

Here0 = v(E×) is the value group of the valuationv on the fraction fieldE
of B with valuation ringB, and0′, v′ andE′ are defined in the same way withB ′
instead ofB. These value groups are considered as ordered abelian groups.

Following Kochen [Ko75, pp. 407–408], the idea of the proof is to pass to suf-
ficiently saturated models where the valuation can be decomposed into a valuation
of equal characteristic 0 and a complete discrete valuation.

Proof. One direction is obvious. For the other direction we assume thatB/m(B) ≡
B ′/m(B ′) and0 ≡ 0′. To show that then(B, 6) ≡ (B ′, 6′), we may assume these
two models ofT are ℵ1-saturated. We focus on(B, 6), but the same analysis
will apply to (B ′, 6′). We coarsenv to the valuatioñv on E with value group
0̃ := 0/Z · 1 (where 1:= v(p) is the smallest positive element of0) by setting
ṽ(a) = v(a) + Z · 1 for a ∈ E×. The valuation ring of̃v is

B̃ := B[1/p] = {a ∈ E : v(a) ≥ −n · 1 for somen}
with maximal ideal̃m := m(B̃) = {a ∈ E : v(a) ≥ n·1 for all n}, and residue field
K := B̃/m̃ of characteristic 0. Theñm is also a prime ideal ofB, andA := B/m̃ is
a valuation ring ofK, with maximal idealpA. The residue class mapλ : B̃ → K

mapsB onto A, and induces by passing to quotients an isomorphismB/pB ∼=
A/pA of the residue fields ofB andA. We putk := B/pB = A/pA by identifying
these residue fields via this isomorphism. Thusp = π◦(λ|B) wherep : B → k and
π : A → k are the residue class maps. HenceS := λ(6) is a multiplicatively closed
subset ofA that is mapped bijectively ontok by the residue class mapA → k. By
ℵ1-saturationA is a complete discrete valuation ring, and therefore(A, S) is also
a model ofT , by Lemma 1. We now show how to “lift” the quotient(K, A, S) of
(B̃, B, 6) back to(B̃, B, 6). The bijectionσ 7→ λ(σ) : 6 → S is multiplicative,
so by the second lemmaλ maps the ringZ[6] isomorphically ontoZ[S] ⊆ K. Thus
the fraction fieldQ(6) ⊆ E of Z[6] is actually contained iñB, andλ mapsQ(6)

isomorphically ontoQ(S). SinceB is henselian, so is its localizatioñB. The residue
fieldK of B̃ being of characteristic 0, it follows that there is a fieldL with Q(6) ⊆
L ⊆ B̃ such thatλ mapsL isomorphically onto all ofK. Then(L, B ∩L, 6) is the
desired lifting of(K, A, S), that is,(L, B ∩L, 6) ⊆ (B̃, B, 6) andλ restricts to an
isomorphism(L, B ∩ L, 6) ∼= (K, A, S). We now shift our attention from(B, 6)

(an expansion of the mixed characteristic valuation ringB) to (B̃, L, B ∩ L, 6)

which we view as the equal characteristic valuation ringB̃ equipped with a lifting
of its expanded residue field(K, A, S). Note thatB is definable in(B̃, L, B∩L, 6)

as follows:B = {x ∈ B̃ : x − y ∈ m̃ for somey ∈ B ∩ L}.
We now carry out the same construction with(B ′, 6′), introducing̃v′, 0̃′, B̃ ′,K ′,

k′, A′, S′ andL′ in the same way we obtained the corresponding unaccented objects
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from(B, 6).As we indicated above it now suffices to show that(B̃, L, B∩L, 6) ≡
(B̃ ′, L′, B ′ ∩ L′, 6′). Consider the ringsW(k) and W(k′) of Witt vectors over
k and k′, and for perfect subfieldsF of k and F ′ of k′, consider the subrings
W(F) andW(F ′) of W(k) andW(k′), as well as the corresponding multiplicatively
closed setsS(F ) ⊆ W(F) andS(F ′) ⊆ W(F ′) that are mapped bijectively onto
F andF ′ by the canonical mapsW(F) → F andW(F ′) → F ′. In particular
we have isomorphisms(A, S) ∼= (W(k), S(k)) and (A′, S′) ∼= (W(k′), S(k′)).
Sincek and k′ are elementarily equivalent andℵ1-saturated, the isomorphisms
F → F ′ between the countableF � k and F ′ � k′ form a back-and-forth
system betweenk andk′. Each isomorphismF → F ′ of this system induces an
isomorphism(W(F), S(F )) → (W(F ′), S(F ′)), thus giving rise to a back-and-
forth system between(W(k), S(F )) and(W(k′), S(k′)). Hence(W(k), S(F )) ≡
(W(k′), S(k′)), and so(A, S) ≡ (A′, S′). Therefore(K, A, S) ≡ (K ′, A′, S′), and
thus(L, B ∩ L, 6) ≡ (L′, B ′ ∩ L′, 6′). This allows us to apply Lemma 3 below
to reach the desired conclusion(B̃, L, B ∩ L, 6) ≡ (B̃ ′, L′, B ′ ∩ L′, 6′). This
application also depends on the fact that0 ≡ 0′ implies0̃ ≡ 0̃′. ut

The lemma appealed to at the end is a variant of the well-known results of Ax,
Kochen and Ersov, and can be proved in the same way, cf. [A73,Ko75,KuPr89]. In
this lemma the value group0 of a valuation ringO refers to the value group of the
valuationv on the fraction field ofO such thatv hasO as its valuation ring. This
value group is considered as an ordered abelian group.

Lemma 3. Let O and O′ be henselian valuation rings of equal characteristic0
with value groups0 and0′, and letL ⊆ O andL′ ⊆ O′ be fields that are mapped
onto the residue fields ofO andO′ by the residue class mapsO → O/m(O) and
O′ → O′/m(O′). LetL be an extension of the language of rings, and letL∗ and
L′∗ be expansions of the ringsL andL′ to L-structures. Then

(O, L∗) ≡ (O′, L′∗) ⇐⇒ 0 ≡ 0′ andL∗ ≡ L′∗.

The following variant of the theorem can be obtained in the same way, by
appealing to a corresponding variant of Lemma 3 (see [KuPr89]). We letk andk′
denote the residue fields of the valuation ringsB andB ′, and let0 and0′ be their
value groups as in the theorem.

Proposition. Let(B, 6) and(B ′, 6′) be models ofT such that(B, 6) ⊆ (B ′, 6′)
(so there are natural inclusionsk ⊆ k′ and0 ⊆ 0′). Then

(B, 6) � (B ′, 6′) ⇐⇒ k � k′ and0 � 0′.

Remark.In Lemma 1 we described theZ-linear relations among the elements of
S ⊆ A. Another way to do this, in some respects more illuminating, is as follows.

First, any root of unity inA belongs toS and any tupleζ = (ζ1, . . . , ζn)

(n > 0) of roots of unityζi ∈ A satisfies non-trivialZ-linear relations. These
relations produce in certain obvious ways further relations, for example, for any
s ∈ S \ {0} the tuplesζ satisfies the sameZ-linear relations asζ .

Secondly, an elementa ∈ A belongs toS if and only if F(a) = ap, whereF is
the canonical lifting of the Frobenius map to an automorphism ofA (see [S62]).
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Using this last fact one can show, following [H], that allZ-linear relations
among elements ofS arise from theZ-linear relations among the roots of unity in
A. This was pointed out to me by Hrushovski.
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