
precattl — Prepare special catcodes from token list ∗

user202729

Released 2022/07/07

Abstract
Allow users to write code that contains tokens with unusual catcodes.

1 Motivation
This package allows developers to quickly prototype writing code by specifying the exact
token list to be executed.

For example, classically if you want to define a space gobbler you would do this

1 \lowercase{\def\spacegobbler} {}

which is equivalent to the token list \def\spacegobbler〈explicit space token〉{}.
In such simple cases there’s negligible benefit in using this package; nevertheless in

some more complex cases such as the following...

1 \begingroup
2 \lccode ‘?=‘_
3 \lowercase{
4 \endgroup
5 \peek_analysis_map_inline:n {
6 \expandafter \string #1
7 \peek_analysis_map_break:
8 }
9 \c_begin_group_token ?

10 }
11

12 \lowercase{\lowercase{\def\twospacegobbler} } {}
13

14 \catcode‘\^^M\active
15 \edef^^M{\string^^M}

it would be beneficial to have simpler construct to express the code.
A side benefit is that there’s no need to do explicit \begingroup ... \endgroup

(and keep track of when \endgroup should be executed), and no risk of accidentally
pretokenizing the token list/it can be used inside argument of anything.

∗This file describes version v0.0.0, last revised 2022/07/07.

1

2 Limitation
• There’s some performance hit. I think it’s about 5 times slower than \tl_analysis_map_inline:nn

on the same token list.
Nevertheless this is not a big problem, as it’s possible to precompile the token list
and include it in the generated .sty file.

• It’s not allowed to pass \outer tokens into the macro directly; however, generating
\outer tokens with \cC and \cA is supported.

3 Syntax

\precattl_exec:n {〈token list〉}

Executes the {〈token list〉} after preprocessing it in the following manner:

• \cC{〈control sequence name〉} is replaced by that control sequence.

• \cFrozenRelax is replaced with the frozen relax control sequence.

• \cA{〈tokens〉}, \cO{〈tokens〉}, etc. are replaced with sequence of tokens with cat-
code active/other respectively.

\precattl_exec:n

In particular, {〈tokens〉} or {〈control sequence name〉} might consist of normal “char-
acters” or control sequences. Control sequences will have its csname appended. (never-
theless don’t use the null control sequence here)

The full list of supported catcodes is the same as l3regex package: \cB, \cE, \cM,
\cT, \cP, \cU, \cD, \cS, \cL, \cO, \cA.

As an example, the examples above can be executed as following:

1 \precattl_exec:n {
2 \def\spacegobbler\cS\ {}
3

4 \peek_analysis_map_inline:n {
5 \expandafter \string #1
6 \peek_analysis_map_break:
7 }
8 \c_begin_group_token \cO_
9

10 \def\twospacegobbler\cS\ \cS\ {}
11

12 \def \cA\^^M {\cO\^^M}
13 }

More details: the token list following one of the \c〈character〉 token might either be a
single token, or a braced group. In the latter case their string representation without any
\escapechar will be concatenated together.

For example:

2

• \cL{12~34} in \ExplSyntaxOn mode results in the 5 tokens with catcode letter and
char code 1, 2, 〈space〉, 3, 4 respectively.

• \cO\abc results in 3 tokens abc with catcode other.

• \cO{\ab\cd\ef} results in 6 tokens abcdef. Note that this is different from the
\detokenized value (that is, the spaces are removed) even when \escapechar=-1.

• \cC{\ab\cd\ef} results in the control sequence \abcdef.

• \cO\\ results in a single token with char code \ and catcode other.

• \cA\^^M results in a single token with catcode active and char code 13. (because
normal TEX processing rules transform the token \^^M to a control sequence with
name length = 1 before passing it to the function \precattl_exec:n)

Remark: don’t put explicit space token right after a \cO or similar. (nevertheless
this is nontrivial to trigger because of how TEX works normally)

Warning: a \ at the end of a line will be interpreted as an escape sequence containing
the \endlinechar.

LATEX2-style synonym for the function above.\precattlExec

\precattl_set:Nn 〈tl var〉 {〈token list〉}

Same as above, but instead of executing the processed {〈token list〉}, the result is stored
into 〈tl var〉.

Mostly equivalent to \precattl_exec:n {\tl_set:Nn 〈tl var〉 {〈token list〉}}.

\precattl_set:Nn

Index
The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

P
precattl commands:

\precattl_exec:n 2, 3

\precattl_set:Nn 3

\precattlExec . 3

3

	1 Motivation
	2 Limitation
	3 Syntax
	Index
	P

