\pdfoutput=1 \documentclass{article} \usepackage{color} \usepackage{amsmath} \DeclareMathOperator{\arctg}{arctg} \everymath{\displaystyle} \usepackage[pdftex,designi]{web} \usepackage[noxcolor,pdftex]{exerquiz} \usepackage[ImplMulti]{dljslib} \parindent 0pt \def\correctColor{color.green} \def\wrongColor{color.red} \usepackage[picture,finetune]{jeopardy} \def\JeopardyPictureFile{joke.jpg} \def\ChampionMsg{Have a fun with math!} \GrandPoohbahtoks{\textColor{1 1 0 rg}\textSize{0}} \everyCategoryHead{\color{darkgreen}\tiny} \pagestyle{empty} \def\logoB{\rotatebox{90}{% \vbox{\normalsize\hbox{\color{red}{Robert Ma\v{r}\'{i}k}} \hbox{\color{green}Jeopardy game}}} \vfill} \let\rmdefault\sfdefault \hypersetup{pdfpagemode=Window, pdfnewwindow=true, pdfmenubar=true,% pdftoolbar=true,colorlinks, pdfwindowui=false, pdfpagemode=Window} \AditionalShift=5pt \begin{document} %\CellHeight=24bp \Celltoks{\BG{1 1 0.8}\textSize{0}\BC{1 1 0.8}\W{0}} \SetGameWidth{0.7\linewidth} \everyPushButton{\S{I}\BC{}} \MakeGameBoard \begin{category}{Precalculus} \begin{question} $\ln \frac xy=$ \Ans0 $\ln x+\ln y$ \Ans1 $\ln x-\ln y$ \Ans0 $x\ln y$ \Ans0 $y\ln x$ \Ans0 none of them \end{question} \begin{question} The function $y=x^2\cdot \sin x$ is \Ans1 odd \Ans0 even \Ans0 neither odd nor even \end{question} \begin{question} $\arctan 1=$ \Ans0 $\infty$ \Ans0 $\frac \pi3$ \Ans1 $\frac \pi4$ \Ans0 $\frac \pi6$ \Ans0 none of them \end{question} \begin{question} The equivalence "$a<b$ if and only if $f(a)<f(b)$" is the property of \Ans0 even functions \Ans0 one-to-one functions \Ans0 continuous functions \Ans1 increasing functions \Ans0 none of them \end{question} \end{category} \begin{category}{Functions} \begin{question} How many points of inflection is on the graph of the function $y=\sin x$ in the open interval $(0,2\pi)$ \Ans0 none \Ans1 one \Ans0 two \Ans0 three \Ans0 none of them \end{question} \begin{question} Find points of discontinuity of the function $y=\frac {x-4}{(x-2)\ln x}$ \Ans0 none \Ans0 $0$ \Ans0 $0$, $1$ \Ans1 $0$, $1$, $2$ \Ans0 $0$, $2$ \Ans0 $0$, $1$, $4$ \Ans0 $0$, $4$ \Ans0 none of them \end{question} \begin{question} Let $f$ be a function and $f^{-1}$ be its inverse. Then $f^{-1}\bigl(f(x)\bigr)=$ \Ans0 $0$ \Ans0 $1$ \Ans1 $x$ \Ans0 $f(x)$ \Ans0 $f^{-1}(x)$ \Ans0 none of them \end{question} \begin{question} $\arcsin(\sin x)=x$ for every $x\in\mathbf{R}$ \Ans0 Yes \Ans1 No \end{question} \end{category} \begin{category}{Limits} \begin{question} $\lim_{x\to-\infty} \arctg x=$ \Ans0 $0$ \Ans0 $\frac\pi2$ \Ans1 $-\frac\pi2$ \Ans0 $\infty$ \Ans0 $-\infty$ \Ans0 none of them \end{question} \begin{question} $\lim_{x\to\infty}\sin x=$ \Ans0 $1$ \Ans0 $-1$ \Ans1 does not exist \Ans0 none of them \end{question} \begin{question} $\lim_{x\to\infty}\frac{2x^3+x^2+4}{x^2-x+2}=$ \Ans1 $\infty$ \Ans0 $2$ \Ans0 $0$ \Ans0 none of them \end{question} \begin{question} $\lim_{x\to 0^+}\frac{e^{1/x}(x-1)}{x}$ \Ans0 $0$ \Ans0 $1$ \Ans0 $e$ \Ans0 $\infty$ \Ans0 $-1$ \Ans0 $-e$ \Ans1 $-\infty$ \Ans0 none of them \end{question} \end{category} \begin{category}{Derivative} \begin{question} $\left(\frac 1{\sqrt[3]x}\right)'=$ \Ans0 $\frac 13 x^{-2/3}$ \Ans0 $-\frac 13 x^{-2/3}$ %\Ans0 $\frac 13 x^{1/3}$ \Ans0 $-\frac 13 x^{1/3}$ \Ans0 $\frac 13 x^{-4/3}$ \Ans1 $-\frac 13 x^{-4/3}$ \Ans0 none of them \end{question} \begin{question} $(x-x\ln x)'=$ \Ans0 $\ln x$ \Ans1 $-\ln x$ \Ans0 $1+\ln x$ \Ans0 $1-\ln x$ \Ans0 $0$ \Ans0 $1-\frac 1x$ \Ans0 none of them \end{question} \begin{question} $\left(x^2e^{x^2}\right)'$ \Ans0 $2xe^{2x}$ \Ans0 $2xe^{x^2}2x$ \Ans0 $2xe^{x^2}+x^2e^{x^2}$ \Ans1 $2xe^{x^2}+x^2e^{x^2}2x$ \Ans0 $2xe^{x^2}2x+x^2e^{x^2}2x$ \Ans0 none of them \end{question} \begin{question} The definition of the derivative of the function $f$ at the point $a$ is \Ans0 $\lim_{h\to 0}\frac{f(x+h)+f(x)}{h}$ \Ans0 $\lim_{h\to 0}\frac{f(x+h)}{h}$ \Ans1 $\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}$ \Ans0 $\lim_{h\to 0}\frac{f(x)-f(x+h)}{h}$ \Ans0 $\lim_{h\to 0}\frac{f(x-h)-f(x)}{h}$ \Ans0 none of them \end{question} \end{category} \everyRespBoxMath{\BG{1 1 1}} \begin{category}{Evaluation of derivatives} \begin{question}$(x^2+1)'=$ \RespBoxMath{2x}{3}{0.001}{[1,5]} \end{question} \begin{question}$(xe^x)'=$ \RespBoxMath{(x+1)e^x}{3}{0.001}{[1,5]} \end{question} \begin{question}$\ln(\sin x)=$ \RespBoxMath{cos(x)/sin(x)}{3}{0.001}{[1,2]} \end{question} \begin{question}$(xe^{-x})'=$ \RespBoxMath{(1-x)e^{-x}}{3}{0.001}{[1,5]} \end{question} \end{category} \begin{category}{Theory} \begin{question} By theorem of Bolzano, the polynomial $y=x^3+2x+4$ has zero on \Ans0 $(0,1)$ \Ans0 $(1,2)$ \Ans0 $(2,3)$ \Ans0 $(-1,0)$ \Ans1 $(-2,-1)$ \Ans0 $(-3,-2)$ \Ans0 none of them \end{question} \begin{question} Let $a\in Im(f)$. Then the solution of the equation $f(x)=a$ exists. This solution is unique if and only if \Ans1 $f$ is one-to-one \Ans0 $f$ is increasing \Ans0 $f$ continuous \Ans0 $f$ differentiable \Ans0 none of them \end{question} \begin{question} If the function has a derivative at the point $x=a$, then it is \Ans0 increasing at $a$. \Ans0 decreasing at $a$. \Ans0 one-to-one at $a$. \Ans1 continuous at $a$. \Ans0 undefined at $a$. \end{question} \begin{question} If both $y(a)=y'(a)=y''(a)=0$, then the function \Ans0 has local maximum at $a$. \Ans0 has local minimum at $a$. \Ans0 has point of inflection at $a$. \Ans1 any of these possibilites may be true, we need more informations. \end{question} \end{category} \end{document} %%% Local Variables: %%% mode: latex %%% TeX-master: t %%% End: