%% S. Lurp --- STRETCHY docs --- MIT License Stretchy provides the stretchy symbols listed below. \subsection{Repeated symbols} Stretchy provides methods of repeating symbols, while also adding stretched material to it. These symbols are: \macroexp{\strtyint {}{}{}/crcr \strtyintlimits {}{}{}} This prints {\it N} integral signs, with {\it sup} and {\it sub} as superscript and subscript material, respectively. \macro\strtyint{} differs from \macro\strtyintlimits{} regarding where the limits are placed. The former places them next to the symbols, the latter above and below. For example, \inlinecode|\strtyint{5}{}{{\bb R}^5}| and \inlinecode|\strtyintlimits{5}{}{{\bb R}^5}| prints $$ \strtyint{5}{}{{\bb R}^5} \quad \strtyintlimits{5}{}{{\bb R}^5} $$ \emacroexp \macroexp{\strtyoint {}{}{}/crcr \strtyointlimits {}{}{}} This prints {\it N} integral signs with a circle stretched out painted on them. {\it sup} and {\it sub} are the superscript and subscript material respectively. \macro\strtyoint{} differs from \macro\strtyointlimits{} regarding where the limits are placed. The former places them next to the symbols, the latter above and below. For example, \inlinecode|\strtyoint{5}{}{\partial S}| and \inlinecode|\stryointlimits{5}{}{\partial S}| prints $$ \strtyoint{5}{}{\partial S} \quad \strtyointlimits{5}{}{{\bb R}^5} $$ \emacroexp \macroexp{\strtysqint {}{}{}/crcr \strtysqintlimits {}{}{}} This prints {\it N} integral signs with a square stretched out painted on them. {\it sup} and {\it sub} are the superscript and subscript material respectively. \macro\strtysqint{} differs from \macro\strtysqintlimits{} regarding where the limits are placed. The former places them next to the symbols, the latter above and below. For example, \inlinecode|\strtysqint{5}{}{\partial S}| and \inlinecode|\strysqintlimits{5}{}{\partial S}| prints $$ \strtysqint{5}{}{\partial S} \quad \strtysqintlimits{5}{}{{\bb R}^5} $$ \emacroexp \macroexp{\strtyrsqint {}{}{}/crcr \strtyrsqintlimits {}{}{}} This prints {\it N} integral signs with a rounded square stretched out painted on them. {\it sup} and {\it sub} are the superscript and subscript material respectively. \macro\strtyrsqint{} differs from \macro\strtyrsqintlimits{} regarding where the limits are placed. The former places them next to the symbols, the latter above and below. For example, \inlinecode|\strtyrsqint{5}{}{\partial S}| and \inlinecode|\stryrsqintlimits{5}{}{\partial S}| prints $$ \strtyrsqint{5}{}{\partial S} \quad \strtyrsqintlimits{5}{}{{\bb R}^5} $$ \emacroexp \macroexp{\strtytriint {}{}{}/crcr \strtytriintlimits {}{}{}} This prints {\it N} integral signs with a triangle stretched out painted on them. {\it sup} and {\it sub} are the superscript and subscript material respectively. \macro\strtytriint{} differs from \macro\strtytriintlimits{} regarding where the limits are placed. The former places them next to the symbols, the latter above and below. For example, \inlinecode|\strtytriint{5}{}{\partial S}| and \inlinecode|\strytriintlimits{5}{}{\partial S}| prints $$ \strtytriint{5}{}{\partial S} \quad \strtytriintlimits{5}{}{{\bb R}^5} $$ \emacroexp \macroexp{\pii {}} Prints $\pi$ with {\it N} legs. This can be used for fractions of $\pi$. That is, \inlinecode|\pii{N}| corresponds to the value $2\pi/N$. For example, \inlinecode|\pii{5}| gives $\pii{5}$ \emacroexp \subsection{Stretched symbols} Stretchy provides methods of stretching symbols, allowing them to grow arbitrarily large. These symbols are: \macroexp{\xint {}{}{}} This draws an integral sign stretched to match the height and depth of {\it material} with superscript and subscript material corresponding to {\it sup} and {\it sub} respectively. For example \inlinecode|\xint {-3}{-2}{\sum_{n=1}^\infty n^x\,dx}| produces $$ \xint {-3}{-2}{\sum_{n=1}^\infty n^x\,dx} $$ \emacroexp \macroexp{\xhsum {}{}/crcr \xvsum {}{}{}/crcr \xhvsum {}{}{}} \blist \item \macro\xhsum{} paints a summation symbol stretched horizontally to match the width of its limits; \item \macro\xvsum{} paints a summation symbol stretched vertically to match the height and depth of {\it material} with the specified limits; \item \macro\xhvsum{} paints a summation symbol stretched both horizontally (to match the width of its limits) and vertically (to match the height and depth of {\it material}). \elist For example, \begincode \xhsum {}{n\in\{2a+3b\;\mid\;a,b\in{\bb Z}\}}{1\over n} \xvsum {}{n\in\{2a+3b\;\mid\;a,b\in{\bb Z}\}}{{1\over n}} \xhvsum {}{n\in\{2a+3b\;\mid\;a,b\in{\bb Z}\}}{{1\over n}} /endcode $$ \xhsum {}{n\in\{2a+3b\;\mid\;a,b\in{\bb Z}\}}{1\over n};\qquad \xvsum {}{n\in\{2a+3b\;\mid\;a,b\in{\bb Z}\}}{{1\over n}};\qquad \xhvsum {}{n\in\{2a+3b\;\mid\;a,b\in{\bb Z}\}}{{1\over n}} $$ \emacroexp \macroexp{\xhbigcup {}{}/crcr \xvbigcup {}{}{}/crcr \xhvbigcup {}{}{}} \blist \item \macro\xhbigcup{} paints a big-cup symbol stretched horizontally to match the width of its limits; \item \macro\xvbigcup{} paints a big-cup symbol stretched vertically to match the height and depth of {\it material} with the specified limits; \item \macro\xhvbigcup{} paints a big-cup symbol stretched both horizontally (to match the width of its limits) and vertically (to match the height and depth of {\it material}). \elist For example, \begincode \xhbigcup{}{f\in L^2(\mu),\int f>0}\left\{{1\over f},f\right\};\qquad \xvbigcup{}{f\in L^2(\mu),\int f>0}{\left\{{1\over f},f\right\}};\qquad \xhvbigcup{}{f\in L^2(\mu),\int f>0}{\left\{{1\over f},f\right\}} /endcode $$ \xhbigcup{}{f\in L^2(\mu),\int f>0}\left\{{1\over f},f\right\};\qquad \xvbigcup{}{f\in L^2(\mu),\int f>0}{\left\{{1\over f},f\right\}};\qquad \xhvbigcup{}{f\in L^2(\mu),\int f>0}{\left\{{1\over f},f\right\}} $$ \emacroexp \macroexp{\xhbigcap {}{}/crcr \xvbigcap {}{}{}/crcr \xhvbigcap {}{}{}} \blist \item \macro\xhbigcap{} paints a big-cap symbol stretched horizontally to match the width of its limits; \item \macro\xvbigcap{} paints a big-cap symbol stretched vertically to match the height and depth of {\it material} with the specified limits; \item \macro\xhvbigcap{} paints a big-cap symbol stretched both horizontally (to match the width of its limits) and vertically (to match the height and depth of {\it material}). \elist For example, \begincode \xhbigcap{}{n=1,2,3,\dots}\left[0,{1\over n}\right] \xvbigcap{}{n=1,2,3,\dots}{\left[0,{1\over n}\right]} \xhvbigcap{}{n=1,2,3,\dots}{\left[0,{1\over n}\right]} /endcode $$ \xhbigcap{}{n=1,2,3,\dots}\left[0,{1\over n}\right];\qquad \xvbigcap{}{n=1,2,3,\dots}{\left[0,{1\over n}\right]};\qquad \xhvbigcap{}{n=1,2,3,\dots}{\left[0,{1\over n}\right]} $$ \emacroexp \macroexp{\xhprod {}{}/crcr \xvprod {}{}{}/crcr \xhvprod {}{}{}} \blist \item \macro\xhprod{} paints a product symbol stretched horizontally to match the width of its limits; \item \macro\xvprod{} paints a productsymbol stretched vertically to match the height and depth of {\it material} with the specified limits; \item \macro\xhvprod{} paints a product symbol stretched both horizontally (to match the width of its limits) and vertically (to match the height and depth of {\it material}). \elist For example, \begincode \xhprod{}{n=1,2,3,\dots}\left[0,{1\over n}\right] \xvprod{}{n=1,2,3,\dots}{\left[0,{1\over n}\right]} \xhvprod{}{n=1,2,3,\dots}{\left[0,{1\over n}\right]} /endcode $$ \xhprod{}{n=1,2,3,\dots}\left[0,{1\over n}\right];\qquad \xvprod{}{n=1,2,3,\dots}{\left[0,{1\over n}\right]};\qquad \xhvprod{}{n=1,2,3,\dots}{\left[0,{1\over n}\right]} $$ \emacroexp \subsection{Stretchy Logo} Stretchy also provides macros for producing its logo. To produce the logo itself, Stretchy provides the macro \macro\stretchylogo: \centerline{\stretchylogo} To produce the e and t in the Stretchy logo, Stretchy provides the macros \macro\strty@e{} and \macro\strty@t, whose usages are \getmacrousage{\strty@e {}/crcr\strty@t {}{}} For example, \begincode \strty@e{15pt} \strty@t{15pt}{10pt} /endcode \centerline{\strty@e{15pt}\qquad\strty@t{15pt}{10pt}}